Subpart HH—National Emission Standards for Hazardous Air Pollutants From Oil and Natural Gas Production Facilities SOURCE: 64 FR 32628, June 17, 1999, unless otherwise noted. #### §63.760 Applicability and designation of affected source. (a) This subpart applies to the owners and operators of the emission points, specified in paragraph (b) of this section that are located at oil and natural gas production facilities that meet the specified criteria in paragraphs (a)(1) and either (a)(2) or (a)(3) of this section. (1) Major sources of hazardous air pollutants (HAP) as determined using the maximum natural gas or hydrocarbon liquid throughput, as approcalculated priate. in paragraphs (a)(1)(i) through (a)(1)(iii) of this section. A facility that is determined to be an area source based on emission estimates using the maximum natural gas or hydrocarbon throughput calculated as specified in paragraphs (a)(1)(i) through (iii) of this section, but subsequently increases emissions or potential to emit above the major source levels (without first obtaining and complying with other limitations that keep its potential to emit HAP below major source levels), becomes a major source and must comply thereafter with all applicable provisions of this subpart starting on the applicable compliance date specified in paragraph (f) of this section. Nothing in this paragraph is intended to preclude a source from limiting its potential to emit through other appropriate mechanisms that may be available through the permitting authority. (i) If the owner or operator documents, to the Administrator's satisfaction, a decline in annual natural gas or hydrocarbon liquid throughput, as appropriate, each year for the 5 years prior to June 17, 1999, the owner or operator shall calculate the maximum natural gas or hydrocarbon liquid throughput used to determine maximum potential emissions according to the requirements specified in paragraph (a)(1)(i)(A) of this section. In all other circumstances, the owner or op- erator shall calculate the maximum throughput used to determine whether a facility is a major source in accordance with the requirements specified in paragraph (a)(1)(i)(B) of this section. (A) The maximum natural gas or hydrocarbon liquid throughput is the average of the annual natural gas or hydrocarbon liquid throughput for the 3 years prior to June 17, 1999, multiplied by a factor of 1.2. (B) The maximum natural gas or hydrocarbon liquid throughput is the highest annual natural gas or hydrocarbon liquid throughput over the 5 years prior to June 17, 1999, multiplied by a factor of 1.2. (ii) The owner or operator shall maintain records of the annual facility natural gas or hydrocarbon liquid throughput each year and upon request submit such records to the Administrator. If the facility annual natural gas or hydrocarbon liquid throughput increases above the maximum natural gas or hydrocarbon liquid throughput calculated in paragraph (a)(1)(i)(A) or (a)(1)(i)(B) of this section, the maximum natural gas or hydrocarbon liquid throughput must be recalculated using the higher throughput multiplied by a factor of 1.2. (iii) The owner or operator shall determine the maximum values for other parameters used to calculate emissions as the maximum for the period over which the maximum natural gas or hydrocarbon liquid throughput is determined in accordance with paragraph (a)(1)(i)(A) or (B) of this section. Parameters shall be based on either highest measured values or annual average. (2) Facilities that process, upgrade, or store hydrocarbon liquids prior to the point of custody transfer. (3) Facilities that process, upgrade, or store natural gas prior to the point at which natural gas enters the natural gas transmission and storage source category or is delivered to a final end user. For the purposes of this subpart, natural gas enters the natural gas transmission and storage source category after the natural gas processing plant, when present. If no natural gas processing plant is present, natural gas enters the natural gas transmission and storage source category after the point of custody transfer. - (b) The affected sources to which the provisions of this subpart apply shall comprise each emission point located at a facility that meets the criteria specified in paragraph (a) of this section and listed in paragraphs (b)(1) through (4) of this section. - Each glycol dehydration unit; - (2) Each storage vessel with the potential for flash emissions; - (3) The group of all ancillary equipment, except compressors, intended to operate in volatile hazardous air pollutant service (as defined in §63.761), which are located at natural gas processing plants; and - (4) Compressors intended to operate in volatile hazardous air pollutant service (as defined in §63.761), which are located at natural gas processing plants. - (c) [Reserved] - (d) The owner and operator of a facility that does not contain an affected source as specified in paragraph (b) of this section are not subject to the requirements of this subpart. - (e) Exemptions. The facilities listed in paragraphs (e)(1) and (e)(2) of this section are exempt from the requirements of this subpart. Records shall be maintained as required in §63.10(b)(3). - (1) A facility that exclusively processes, stores, or transfers black oil (as defined in §63.761) is not subject to the requirements of this subpart. For the purposes of this subpart, a black oil facility that uses natural gas for fuel or generates gas from black oil shall qualify for this exemption. - (2) A facility, prior to the point of custody transfer, with a facilitywide actual annual average natural gas throughput less than 18.4 thousand standard cubic meters per day and a facilitywide actual annual average hydrocarbon liquid throughput less than 39,700 liters per day. - (f) The owner or operator of an affected source shall achieve compliance with the provisions of this subpart by the dates specified in paragraphs (f)(1) and (f)(2) of this section. - (1) The owner or operator of an affected source, the construction or reconstruction of which commenced before February 6, 1998, shall achieve compliance with provisions of this subpart no later than June 17, 2002 except - as provided for in §63.6(i). The owner or operator of an area source, the construction or reconstruction of which commenced before February 6, 1998, that increases its emissions of (or its potential to emit) HAP such that the source becomes a major source that is subject to this subpart shall comply with this subpart 3 years after becoming a major source. - (2) The owner or operator of an affected source, the construction or reconstruction of which commences on or after February 6, 1998, shall achieve compliance with the provisions of this subpart immediately upon initial startup or June 17, 1999, whichever date is later. Area sources, the construction or reconstruction of which commences on or after February 6, 1998, that become major sources shall comply with the provisions of this standard immediately upon becoming a major source. - (g) The following provides owners or operators of an affected source with information on overlap of this subpart with other regulations for equipment leaks. The owner or operator shall document that they are complying with other regulations by keeping the records specified in §63.774(b)(9). - (1) After the compliance dates specified in paragraph (f) of this section, ancillary equipment and compressors that are subject to this subpart and that are also subject to and controlled under the provisions of 40 CFR part 60, subpart KKK, are only required to comply with the requirements of 40 CFR part 60, subpart KKK. - (2) After the compliance dates specified in paragraph (f) of this section, ancillary equipment and compressors that are subject to this subpart and are also subject to and controlled under the provisions of 40 CFR part 61, subpart V, are only required to comply with the requirements of 40 CFR part 61, subpart V. - (3) After the compliance dates specified in paragraph (f) of this section, ancillary equipment and compressors that are subject to this subpart and are also subject to and controlled under the provisions of 40 CFR part 63, subpart H, are only required to comply with the requirements of 40 CFR part 63, subpart H. (h) An owner or operator of an affected source that is a major source or is located at a major source and is subject to the provisions of this subpart is also subject to 40 CFR part 70 or part 71 operating permit requirements. #### §63.761 Definitions. All terms used in this subpart shall have the meaning given them in the Clean Air Act (Act), subpart A of this part (General Provisions), and in this section. If the same term is defined in subpart A and in this section, it shall have the meaning given in this section for purposes of this subpart. Alaskan North Slope means the approximately 180,000 square kilometer area (69,000 square mile area) extending from the Brooks Range to the Arctic Ocean Ancillary equipment means any of the following pieces of equipment: pumps, pressure relief devices, sampling connection systems, open-ended valves, or lines, valves, flanges, or other connectors API gravity means the weight per unit volume of hydrocarbon liquids as measured by a system recommended by the American Petroleum Institute (API) and is expressed in degrees. Associated equipment, as used in this subpart and as referred to in section 112(n)(4) of the Act, means equipment associated with an oil or natural gas exploration or production well, and includes all equipment from the wellbore to the point of custody transfer, except glycol dehydration units and storage vessels with the potential for flash emissions. Black oil means hydrocarbon (petroleum) liquid with an initial producing gas-to-oil ratio (GOR) less than 0.31 cubic meters per liter and an API gravity less than 40 degrees. Boiler means an enclosed device using
controlled flame combustion and having the primary purpose of recovering and exporting thermal energy in the form of steam or hot water. Boiler also means any industrial furnace as defined in 40 CFR 260.10. Closed-vent system means a system that is not open to the atmosphere and is composed of piping, ductwork, connections, and if necessary, flow inducing devices that transport gas or vapor from an emission point to one or more control devices. If gas or vapor from regulated equipment is routed to a process (e.g., to a fuel gas system), the conveyance system shall not be considered a closed-vent system and is not subject to closed-vent system standards Combustion device means an individual unit of equipment, such as a flare, incinerator, process heater, or boiler, used for the combustion of organic HAP emissions. Condensate means hydrocarbon liquid separated from natural gas that condenses due to changes in the temperature, pressure, or both, and remains liquid at standard conditions, as specified in §63.2. Continuous recorder means a data recording device that either records an instantaneous data value at least once every hour or records hourly or more frequent block average values. Control device means any equipment used for recovering or oxidizing HAP or volatile organic compound (VOC) vapors. Such equipment includes, but is not limited to, absorbers, carbon adsorbers, condensers, incinerators, flares, boilers, and process heaters. For the purposes of this subpart, if gas or vapor from regulated equipment is used, reused (i.e., injected into the flame zone of a combustion device), returned back to the process, or sold, then the recovery system used, including piping, connections, and flow inducing devices, is not considered to be control devices or closed-vent systems. Cover means a device which is placed on top of or over a material such that the entire surface area of the material is enclosed and sealed. A cover may have openings (such as access hatches, sampling ports, and gauge wells) if those openings are necessary for operation, inspection, maintenance, or repair of the unit on which the cover is installed, provided that each opening is closed and sealed when the opening is not in use. In addition, a cover may have one or more safety devices. Examples of a cover include, but are not limited to, a fixed-roof installed on a tank, an external floating roof installed on a tank, and a lid installed on a drum or other container. Custody transfer means the transfer of hydrocarbon liquids or natural gas: after processing and/or treatment in the producing operations, or from storage vessels or automatic transfer facilities or other such equipment, including product loading racks, to pipelines or any other forms of transportation. For the purposes of this subpart, the point at which such liquids or natural gas enters a natural gas processing plant is a point of custody transfer. Equipment leaks means emissions of HAP from ancillary equipment (as defined in this section) and compressors. Facility means any grouping of equipment where hydrocarbon liquids are processed, upgraded (i.e., remove impurities or other constituents to meet contract specifications), or stored prior to the point of custody transfer; or where natural gas is processed, upgraded, or stored prior to entering the natural gas transmission and storage source category. For the purpose of a major source determination, facility (including a building, structure, or installation) means oil and natural gas production and processing equipment that is located within the boundaries of an individual surface site as defined in this section. Equipment that is part of a facility will typically be located within close proximity to other equipment located at the same facility. Pieces of production equipment or groupings of equipment located on different oil and gas leases, mineral fee tracts, lease tracts, subsurface or surface unit areas, surface fee tracts, surface lease tracts, or separate surface sites, whether or not connected by a road, waterway, power line or pipeline, shall not be considered part of the same facility. Examples of facilities in the oil and natural gas production source category include, but are not limited to, well sites, satellite tank batteries, central tank batteries, a compressor station that transports natural gas to a natural gas processing plant, and natural gas processing plants. Field natural gas means natural gas extracted from a production well prior to entering the first stage of processing, such as dehydration. Fixed-roof means a cover that is mounted on a storage vessel in a stationary manner and that does not move with fluctuations in liquid level. Flame zone means the portion of the combustion chamber in a combustion device occupied by the flame envelope. *Flash tank.* See the definition for gascondensate-glycol (GCG) separator. Flow indicator means a device which indicates whether gas flow is present in a line or whether the valve position would allow gas flow to be present in a line. Gas-condensate-glycol (GCG) separator means a two- or three-phase separator through which the "rich" glycol stream of a glycol dehydration unit is passed to remove entrained gas and hydrocarbon liquid. The GCG separator is commonly referred to as a flash separator or flash tank. Gas-to-oil ratio (GOR) means the number of standard cubic meters of gas produced per liter of crude oil or other hydrocarbon liquid. Glycol dehydration unit means a device in which a liquid glycol (including, but not limited to, ethylene glycol, diethylene glycol, or triethylene glycol) absorbent directly contacts a natural gas stream and absorbs water in a contact tower or absorption column (absorber). The glycol contacts and absorbs water vapor and other gas stream constituents from the natural gas and becomes "rich" glycol. This glycol is then regenerated in the glycol dehydration unit reboiler. The "lean" glycol is then recycled. Glycol dehydration unit baseline operations means operations representative of the glycol dehydration unit operations as of June 17, 1999. For the purposes of this subpart, for determining the percentage of overall HAP emission reduction attributable to process modifications, baseline operations shall be parameter values (including, but not limited to, glycol circulation rate or glycol-HAP absorbency) that represent actual long-term conditions (i.e., at least 1 year). Glycol dehydration units in operation for less than 1 year shall document that the parameter values represent expected long-term operating conditions had process modifications not been made. Glycol dehydration unit process vent means either the glycol dehydration unit reboiler vent and the vent from the GCG separator (flash tank), if present. Glycol dehydration unit reboiler vent means the vent through which exhaust from the reboiler of a glycol dehydration unit passes from the reboiler to the atmosphere or to a control device. Hazardous air pollutants or HAP means the chemical compounds listed in section 112(b) of the Clean Air Act. All chemical compounds listed in section 112(b) of the Act need to be considered when making a major source determination. Only the HAP compounds listed in Table 1 of this subpart need to be considered when determining compliance. Hydrocarbon liquid means any naturally occurring, unrefined petroleum liquid. In VHAP service means that a piece of ancillary equipment or compressor either contains or contacts a fluid (liquid or gas) which has a total volatile HAP (VHAP) concentration equal to or greater than 10 percent by weight as determined according to the provisions of §63.772(a). In wet gas service means that a piece of equipment contains or contacts the field gas before the extraction of natural gas liquids. Incinerator means an enclosed combustion device that is used for destroying organic compounds. Auxiliary fuel may be used to heat waste gas to combustion temperatures. Any energy recovery section is not physically formed into one manufactured or assembled unit with the combustion section; rather, the energy recovery section is a separate section following the combustion section and the two are joined by ducts or connections carrying flue gas. The above energy recovery section limitation does not apply to an energy recovery section used solely to preheat the incoming vent stream or combustion Initial producing GOR means the producing standard cubic meters of gas per liter at the time that the reservoir pressure is above the bubble point pressure (or dewpoint pressure for a gas). *Initial startup* means the first time a new or reconstructed source begins production. For the purposes of this subpart, initial startup does not include subsequent startups (as defined in this section) of equipment, for example, following malfunctions or shutdowns. Major source, as used in this subpart, shall have the same meaning as in §63.2, except that: (1) Emissions from any oil or gas exploration or production well (with its associated equipment (as defined in this section)) and emissions from any pipeline compressor station or pump station shall not be aggregated with emissions from other similar units, to determine whether such emission points or stations are major sources, even when emission points are in a contiguous area or under common control; (2) Emissions from processes, operations, or equipment that are not part of the same facility, as defined in this section, shall not be aggregated; and (3) For facilities that are production field facilities, only HAP emissions from glycol dehydration units and storage tanks with flash emission potential shall be aggregated for a major source determination. Natural gas means a naturally occurring mixture of hydrocarbon and non-hydrocarbon gases found in geologic formations beneath the earth's surface. The principal hydrocarbon constituent is methane. Natural gas liquids (NGL) means the liquid hydrocarbons,
such as ethane, propane, butane, pentane, natural gasoline, and condensate that are extracted from field natural gas. Natural gas processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, or the fractionation of mixed NGL to natural gas products, or a combination of both. No detectable emissions means no escape of HAP from a device or system to the atmosphere as determined by: - (1) Instrument monitoring results in accordance with the requirements of §63.772(c); and - (2) The absence of visible openings or defects in the device or system, such as rips, tears, or gaps. Operating parameter value means a minimum or maximum value established for a control device or process parameter which, if achieved by itself or in combination with one or more other operating parameter values, indicates that an owner or operator has complied with an applicable operating parameter limitation, over the appropriate averaging period as specified in §63.772(f) or (g). Operating permit means a permit required by 40 CFR part 70 or part 71. Organic monitoring device means an instrument used to indicate the concentration level of organic compounds exiting a control device based on a detection principle such as infra-red, photoionization, or thermal conductivity. Primary fuel means the fuel that provides the principal heat input (i.e., more than 50 percent) to the device. To be considered primary, the fuel must be able to sustain operation without the addition of other fuels. Process heater means an enclosed device using a controlled flame, the primary purpose of which is to transfer heat to a process fluid or process material that is not a fluid, or to a heat transfer material for use in a process (rather than for steam generation). Produced water means water that is extracted from the earth from an oil or natural gas production well, or that is separated from crude oil, condensate, or natural gas after extraction. Production field facilities means those facilities located prior to the point of custody transfer. *Production well* means any hole drilled in the earth from which crude oil, condensate, or field natural gas is extracted. Reciprocating compressor means a piece of equipment that increases the pressure of a process gas by positive displacement, employing linear movement of the drive shaft. Relief device means a device used only to release an unplanned, non-routine discharge in order to avoid safety hazards or equipment damage. A relief device discharge can result from an operator error, a malfunction such as a power failure or equipment failure, or other unexpected cause that requires immediate venting of gas from process equipment in order to avoid safety hazards or equipment damage. Safety device means a device that meets both of the following conditions: it is not used for planned or routine venting of liquids, gases, or fumes from the unit or equipment on which the device is installed; and it remains in a closed, sealed position at all times except when an unplanned event requires that the device open for the purpose of preventing physical damage or permanent deformation of the unit or equipment on which the device is installed in accordance with good engineering and safety practices for handling flammable, combustible, explosive, or other hazardous materials. Examples of unplanned events which may require a safety device to open include failure of an essential equipment component or a sudden power outage. Shutdown means for purposes including, but not limited to, periodic maintenance, replacement of equipment, or repair, the cessation of operation of a glycol dehydration unit, or other affected source under this subpart, or equipment required or used solely to comply with this subpart. Startup means the setting into operation of a glycol dehydration unit, or other affected equipment under this subpart, or equipment required or used to comply with this subpart. Startup includes initial startup and operation solely for the purpose of testing equipment. Storage vessel means a tank or other vessel that is designed to contain an accumulation of crude oil, condensate, intermediate hydrocarbon liquids, or produced water and that is constructed primarily of non-earthen materials (e.g., wood, concrete, steel, plastic) that provide structural support. Storage vessel with the potential for flash emissions means any storage vessel that contains a hydrocarbon liquid with a stock tank GOR equal to or greater than 0.31 cubic meters per liter and an API gravity equal to or greater than 40 degrees and an actual annual average hydrocarbon liquid throughput equal to or greater than 79,500 liters per day. Flash emissions occur when dissolved hydrocarbons in the fluid evolve from solution when the fluid pressure is reduced. Surface site means any combination of one or more graded pad sites, gravel pad sites, foundations, platforms, or the immediate physical location upon which equipment is physically affixed. Tank battery means a collection of equipment used to separate, treat, store, and transfer crude oil, condensate, natural gas, and produced water. A tank battery typically receives crude oil, condensate, natural gas, or some combination of these extracted products from several production wells for accumulation and separation prior to transmission to a natural gas plant or petroleum refinery. A tank battery may or may not include a glycol dehydration unit. Temperature monitoring device means an instrument used to monitor temperature and having a minimum accuracy of ± 2 percent of the temperature being monitored expressed in °C, or ± 2.5 °C, whichever is greater. The temperature monitoring device may measure temperature in degrees Fahrenheit or degrees Celsius, or both. *Total organic compounds* or *TOC*, as used in this subpart, means those compounds which can be measured according to the procedures of Method 18, 40 CFR part 60, appendix A. Volatile hazardous air pollutant concentration or VHAP concentration means the fraction by weight of all HAP contained in a material as determined in accordance with procedures specified in §63.772(a). #### §63.762 Startups, shutdowns, and malfunctions. (a) The provisions set forth in this subpart shall apply at all times except during startups or shutdowns, during malfunctions, and during periods of non-operation of the affected sources (or specific portion thereof) resulting in cessation of the emissions to which this subpart applies. However, during the startup, shutdown, malfunction, or period of non-operation of one portion of an affected source, all emission points which can comply with the specific provisions to which they are subject must do so during the startup, shutdown, malfunction, or period of non-operation. (b) The owner or operator shall not shut down items of equipment that are required or utilized for compliance with the provisions of this subpart during times when emissions are being routed to such items of equipment, if the shutdown would contravene requirements of this subpart applicable to such items of equipment. This paragraph does not apply if the item of equipment is malfunctioning, or if the owner or operator must shut down the equipment to avoid damage due to a contemporaneous startup, shutdown, or malfunction of the affected source or a portion thereof. (c) During startups, shutdowns, and malfunctions when the requirements of this subpart do not apply pursuant to paragraphs (a) and (b) of this section, the owner or operator shall implement, to the extent reasonably available, measures to prevent or minimize excess emissions to the maximum extent practical. For purposes of this paragraph, the term "excess emissions" means emissions in excess of those that would have occurred if there were no startup, shutdown, or malfunction, and the owner or operator complied with the relevant provisions of this subpart. The measures to be taken shall be identified in the applicable startup, shutdown, and malfunction plan, and may include, but are not limited to, air pollution control technologies, recovery technologies, work practices, pollution prevention, monitoring, and/or changes in the manner of operation of the source. Back-up control devices are not required, but may be used if available. (d) The owner or operator shall prepare a startup, shutdown, or malfunction plan as required in §63.6(e)(3) except that the plan is not required to be incorporated by reference into the source's title V permit as specified in §63.6(e)(3)(i). Instead, the owner or operator shall keep the plan on record as required by §63.6(e)(3)(v). The failure of the plan to adequately minimize emissions during startup, shutdown, or malfunctions does not shield an owner or operator from enforcement actions. # §63.763 [Reserved] # §63.764 General standards. (a) Table 1 of this subpart specifies the provisions of subpart A (General Provisions) that apply and those that do not apply to owners and operators of affected sources subject to this subpart. - (b) All reports required under this subpart shall be sent to the Administrator at the appropriate address listed in §63.13. Reports may be submitted on electronic media. - (c) Except as specified in paragraph (e) of this section, the owner or operator of an affected source located at an existing or new major source of HAP emissions shall comply with the standards in this subpart as specified in paragraphs (c)(1) through (3) of this section. - (1) For each glycol dehydration unit process vent subject to this subpart, the owner or operator shall comply with the requirements specified in paragraphs (c)(1)(i) through (iii) of this section. - (i) The owner or operator shall comply with the control requirements for glycol dehydration unit process vents specified in §63.765; - (ii) The owner or operator shall comply with the monitoring requirements specified in §63.773; and - (iii) The owner or operator shall
comply with the recordkeeping and reporting requirements specified in §§ 63.774 and 63.775. - (2) For each storage vessel with the potential for flash emissions subject to this subpart, the owner or operator shall comply with the requirements specified in paragraphs (c)(2)(i) through (iii) of this section. - (i) The control requirements for storage vessels specified in § 63.766; - (ii) The monitoring requirements specified in §63.773; and - (iii) The recordkeeping and reporting requirements specified in §§ 63.774 and 63.775. - (3) For ancillary equipment (as defined in §63.761) and compressors at a natural gas processing plant subject to this subpart, the owner or operator shall comply with the requirements for equipment leaks specified in §63.769. - (d) [Reserved] - (e) Exemptions. (1) The owner or operator is exempt from the requirements of paragraph (c)(1) of this section if the criteria listed in paragraph (e)(1)(i) or (e)(1)(ii) are met. Records of the determination of these criteria must be maintained as required in 63.774(d)(1) of this subpart. - (i) The actual annual average flowrate of natural gas to the glycol dehydration unit is less than 85 thousand standard cubic meters per day, as determined by the procedures specified in §63.772(b)(1) of this subpart; or - (ii) The actual average emissions of benzene from the glycol dehydration unit process vent to the atmosphere are less than 0.90 megagram per year, as determined by the procedures specified in §63.772(b)(2) of this subpart. - (2) The owner or operator is exempt from the requirements of paragraph (c)(3) of this section for ancillary equipment (as defined in §63.761) and compressors at a natural gas processing plant subject to this subpart, if the criteria listed in paragraphs (e)(2)(i) and (e)(2)(ii) are met. Records of the determination of these criteria must be maintained as required in §63.774(d)(2) of this subpart. - (i) Any ancillary equipment and compressors that contain or contact a fluid (liquid or gas) must have a total VHAP concentration less than 10 percent by weight, as determined by the procedures specified in §63.772(a) of this subpart; and - (ii) That ancillary equipment and compressors must operate in VHAP service less than 300 hours per calendar year. - (f) Each owner or operator of a major HAP source subject to this subpart is required to apply for a 40 CFR part 70 or part 71 operating permit from the appropriate permitting authority. If the Administrator has approved a State operating permit program under 40 CFR part 70, the permit shall be obtained from the State authority. If a State operating permit program has not been approved, the owner or operator of a source shall apply to the EPA Regional Office pursuant to 40 CFR part 71. - (g)-(h)[Reserved] - (i) In all cases where the provisions of this subpart require an owner or operator to repair leaks by a specified time after the leak is detected, it is a violation of this standard to fail to take action to repair the leak(s) within the specified time. If action is taken to repair the leak(s) within the specified time, failure of that action to successfully repair the leak(s) is not a violation of this standard. However, if the repairs are unsuccessful, a leak is detected and the owner or operator shall take further action as required by the applicable provisions of this subpart. # §63.765 Glycol dehydration unit process vent standards. - (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or greater than 85 thousand standard cubic meters per day and with actual average benzene glycol dehydration unit process vent emissions equal to or greater than 0.90 megagrams per year, that must be controlled for HAP emissions as specified in §63.764(c)(1)(i). - (b) Except as provided in paragraph (c) of this section, an owner or operator of a glycol dehydration unit process vent shall comply with the requirements specified in paragraphs (b)(1) and (b)(2) of this section. - (1) For each glycol dehydration unit process vent, the owner or operator shall control air emissions by either paragraph (b)(1)(i) or (b)(1)(ii) of this section. - (i) The owner or operator shall connect the process vent to a control device or a combination of control devices through a closed-vent system. The closed-vent system shall be designed and operated in accordance with the requirements of §63.771(c). The control device(s) shall be designed and operated in accordance with the requirements of §63.771(d). - (ii) The owner or operator shall connect the process vent to a control device or combination of control devices through a closed-vent system and the outlet benzene emissions from the control device(s) shall be reduced to a level less than 0.90 megagrams per year. The closed-vent system shall be designed and operated in accordance with the requirements of §63.771(c). The control device(s) shall be designed and operated in accordance with the requirements of §63.771(d), except that the performance levels specified in §63.771(d)(1)(i) and (ii) do not apply. - (2) One or more safety devices that vent directly to the atmosphere may be - used on the air emission control equipment installed to comply with paragraph (b)(1) of this section. - (c) As an alternative to the requirements of paragraph (b) of this section, the owner or operator may comply with one of the requirements specified in paragraphs (c)(1) through (3) of this section. - (1) The owner or operator shall control air emissions by connecting the process vent to a process natural gas line. - (2) The owner or operator shall demonstrate, to the Administrator's satisfaction, that the total HAP emissions to the atmosphere from the glycol dehydration unit process vent are reduced by 95.0 percent through process modifications, or a combination of process modifications and one or more control devices, in accordance with the requirements specified in §63.771(e). - (3) Control of HAP emissions from a GCG separator (flash tank) vent is not required if the owner or operator demonstrates, to the Administrator's satisfaction, that total emissions to the atmosphere from the glycol dehydration unit process vent are reduced by one of the levels specified in paragraphs (c)(3)(i) through (c)(3)(ii) of this section, through the installation and operation of controls as specified in paragraph (b)(1) of this section. - (i) HAP emissions are reduced by 95.0 percent or more. - (ii) Benzene emissions are reduced to a level less than 0.90 megagrams per year. # §63.766 Storage vessel standards. - (a) This section applies to each storage vessel with the potential for flash emissions (as defined in §63.761) subject to this subpart. - (b) The owner or operator of a storage vessel with the potential for flash emissions (as defined in §63.761) shall comply with one of the control requirements specified in paragraphs (b)(1) and (2) of this section. - (1) The owner or operator shall equip the affected storage vessel with the potential for flash emissions with a cover that is connected, through a closedvent system that meets the conditions # §§ 63.767-63.768 specified in §63.771(c), to a control device or a combination of control devices that meets any of the conditions specified in §63.771(d). The cover shall be designed and operated in accordance with the requirements of §63.771(b). - (2) The owner or operator of a pressure storage vessel that is designed to operate as a closed system shall operate the storage vessel with no detectable emissions at all times that material is in the storage vessel, except as provided for in paragraph (c) of this section. - (c) One or more safety devices that vent directly to the atmosphere may be used on the storage vessel and air emission control equipment complying with paragraphs (b)(1) and (2) of this section. - (d) This section does not apply to storage vessels for which the owner or operator is meeting the requirements specified in 40 CFR part 60, subpart Kb; or is meeting the requirements specified in 40 CFR part 63, subparts G or CC. # §§ 63.767-63.768 [Reserved] # §63.769 Equipment leak standards. - (a) This section applies to equipment subject to this subpart, located at natural gas processing plants and specified in paragraphs (a)(1) and (a)(2) of this section, that contains or contacts a fluid (liquid or gas) that has a total VHAP concentration equal to or greater than 10 percent by weight (determined according to the procedures specified in §63.772(a)) and that operates in VHAP service equal to or greater than 300 hours per calendar year. - (1) Ancillary equipment, as defined in §63.761; and - (2) Compressors. - (b) This section does not apply to ancillary equipment and compressors for which the owner or operator is meeting the requirements specified in subpart H of this part; or is meeting the requirements specified in 40 CFR part 60, subpart KKK. - (c) For each piece of ancillary equipment and each compressor subject to this section located at an existing or new source, the owner or operator shall meet the requirements specified in 40 CFR part 61, subpart V, §§61.241 through 61.247, except as specified in paragraphs (c)(1) through (8) of this section. - (1) Each pressure relief device in gas/vapor service shall be monitored quarterly and within 5 days after each pressure release to detect leaks, except under the following conditions. - (i) The owner or operator has obtained permission from the Administrator to use an alternative means of emission limitation that achieves a reduction in emissions of VHAP at least equivalent to that achieved by the control required in this subpart. - (ii) The pressure relief device is located in a nonfractionating facility that is monitored only by non-facility personnel, it may be monitored after a pressure release the next time the monitoring personnel are on site, instead of within 5 days. Such a pressure relief device
shall not be allowed to operate for more than 30 days after a pressure release without monitoring. - (2) For pressure relief devices, if an instrument reading of 10,000 parts per million or greater is measured, a leak is detected. - (3) For pressure relief devices, when a leak is detected, it shall be repaired as soon as practicable, but no later than 15 calendar days after it is detected, unless a delay in repair of equipment is granted under 40 CFR 61.242-10. - (4) Sampling connection systems are exempt from the requirements of 40 CFR 61.242-5. - (5) Pumps in VHAP service, valves in gas/vapor and light liquid service, and pressure relief devices in gas/vapor service that are located at a nonfractionating plant that does not have the design capacity to process 283,000 standard cubic meters per day or more of field gas are exempt from the routine monitoring requirements of 40 CFR 61.242-2(a)(1) and 61.242-7(a), and paragraphs (c)(1) through (3) of this section. - (6) Pumps in VHAP service, valves in gas/vapor and light liquid service, and pressure relief devices in gas/vapor service located within a natural gas processing plant that is located on the Alaskan North Slope are exempt from the routine monitoring requirements of 40 CFR 61.242–2(a)(1) and 61.242–7(a), and (c)(1) through (3) of this section. - (7) Reciprocating compressors in wet gas service are exempt from the compressor control requirements of 40 CFR 61.242-3. - (8) Flares used to comply with this subpart shall comply with the requirements of §63.11(b). # §63.770 [Reserved] # §63.771 Control equipment requirements. - (a) This section applies to each cover, closed-vent system, and control device installed and operated by the owner or operator to control air emissions as required by the provisions of this subpart. Compliance with paragraphs (b), (c), and (d) of this section will be determined by review of the records required by §63.774 and the reports required by §63.775, by review of performance test results, and by inspections. - (b) Cover requirements. (1) The cover and all openings on the cover (e.g., access hatches, sampling ports, and gauge wells) shall be designed to form a continuous barrier over the entire surface area of the liquid in the tank. - (2) Each cover opening shall be secured in a closed, sealed position (e.g., covered by a gasketed lid or cap) whenever material is in the unit on which the cover is installed except during those times when it is necessary to use an opening as follows: - (i) To add material to, or remove material from the unit (this includes openings necessary to equalize or balance the internal pressure of the unit following changes in the level of the material in the unit); - (ii) To inspect or sample the material in the unit; - (iii) To inspect, maintain, repair, or replace equipment located inside the unit; or - (iv) To vent liquids, gases, or fumes from the unit through a closed-vent system to a control device designed and operated in accordance with the requirements of paragraphs (c) and (d) of this section. - (c) Closed-vent system requirements. (1) The closed-vent system shall route all gases, vapors, and fumes emitted from the material in a HAP emissions unit to a control device that meets the re- - quirements specified in paragraph (d) of this section. - (2) The closed-vent system shall be designed and operated with no detectable emissions. - (3) If the closed-vent system contains one or more bypass devices that could be used to divert all or a portion of the gases, vapors, or fumes from entering the control device, the owner or operator shall meet the requirements specified in paragraphs (c)(3)(i) and (c)(3)(ii) of this section. - (i) For each bypass device, except as provided for in paragraph (c)(3)(ii) of this section, the owner or operator shall either: - (A) Properly install, calibrate, maintain, and operate a flow indicator at the inlet to the bypass device that could divert the stream away from the control device to the atmosphere that takes a reading at least once every 15 minutes and sounds an alarm when the bypass device is open such that the stream is being, or could be, diverted away from the control device to the atmosphere; or - (B) Secure the bypass device valve installed at the inlet to the bypass device in the non-diverting position using a car-seal or a lock-and-key type configuration. The owner or operator shall visually inspect the seal or closure mechanism at least once every month to verify that the valve is maintained in the non-diverting position and the vent stream is not diverted through the bypass device. - (ii) Low leg drains, high point bleeds, analyzer vents, open-ended valves or lines, and safety devices are not subject to the requirements of paragraph (c)(3)(i) of this section. - (d) Control device requirements. (1) The control device used to reduce HAP emissions in accordance with the standards of this subpart shall be one of the control devices specified in paragraphs (d)(1)(i) through (iii) of this section. - (i) An enclosed combustion device (e.g., thermal vapor incinerator, catalytic vapor incinerator, boiler, or process heater) that is designed and operated in accordance with one of the following performance requirements: - (A) Reduces the mass content of either TOC or total HAP in the gases vented to the device by 95.0 percent by weight or greater as determined in accordance with the requirements of §63.772(e); or - (B) Reduces the concentration of either TOC or total HAP in the exhaust gases at the outlet to the device to a level equal to or less than 20 parts per million by volume on a dry basis corrected to 3 percent oxygen as determined in accordance with the requirements of §63.772(e); or - (C) Operates at a minimum residence time of 0.5 seconds at a minimum temperature of 760°C . - (D) If a boiler or process heater is used as the control device, then the vent stream shall be introduced into the flame zone of the boiler or process heater. - (ii) A vapor recovery device (e.g., carbon adsorption system or condenser) or other control device that is designed and operated to reduce the mass content of either TOC or total HAP in the gases vented to the device by 95.0 percent by weight or greater as determined in accordance with the requirements of §63.772(e). - (iii) A flare that is designed and operated in accordance with the requirements of §63.11(b). - (2) [Reserved] - (3) The owner or operator shall demonstrate that a control device achieves the performance requirements of paragraph (d)(1) of this section as specified in §63.772(e). - (4) The owner or operator shall operate each control device in accordance with the requirements specified in paragraphs (d)(4)(i) and (ii) of this section. - (i) Each control device used to comply with this subpart shall be operating at all times when gases, vapors, and fumes are vented from the HAP emissions unit or units through the closed-vent system to the control device, as required under §§63.765, 63.766, and 63.769, except when maintenance or repair on a unit cannot be completed without a shutdown of the control device. An owner or operator may vent more than one unit to a control device used to comply with this subpart. - (ii) For each control device monitored in accordance with the requirements of §63.773(d), the owner or oper- - ator shall demonstrate compliance according to the requirements of §63.772(f) or (g), as applicable. - (5) For each carbon adsorption system used as a control device to meet the requirements of paragraph (d)(1) of this section, the owner or operator shall manage the carbon as follows: - (i) Following the initial startup of the control device, all carbon in the control device shall be replaced with fresh carbon on a regular, predetermined time interval that is no longer than the carbon service life established for the carbon adsorption system. - (ii) The spent carbon removed from the carbon adsorption system shall be either regenerated, reactivated, or burned in one of the units specified in paragraphs (d)(5)(ii)(A) through (d)(5)(ii)(G) of this section. - (A) Regenerated or reactivated in a thermal treatment unit for which the owner or operator has been issued a final permit under 40 CFR part 270 that implements the requirements of 40 CFR part 264, subpart X. - (B) Regenerated or reactivated in a thermal treatment unit equipped with and operating air emission controls in accordance with this section. - (C) Regenerated or reactivated in a thermal treatment unit equipped with and operating organic air emission controls in accordance with a national emissions standard for HAP under another subpart in 40 CFR part 61 or this part. - (D) Burned in a hazardous waste incinerator for which the owner or operator has been issued a final permit under 40 CFR part 270 that implements the requirements of 40 CFR part 264, subpart O. - (E) Burned in a hazardous waste incinerator which the owner or operator has designed and operates in accordance with the requirements of 40 CFR part 265, subpart O. - (F) Burned in a boiler or industrial furnace for which the owner or operator has been issued a final permit under 40 CFR part 270 that implements the requirements of 40 CFR part 266, subpart H. - (G) Burned in a boiler or industrial furnace which the owner or operator has designed and operates in accordance with the interim status requirements of 40 CFR part 266, subpart H. - (e) Process modification requirements. Each owner or operator that chooses to comply with §63.765(c)(2) shall meet the requirements specified in paragraphs (e)(1) through (e)(3) of this section. - (1) The owner or operator shall determine glycol dehydration unit baseline operations (as defined in §63.761). Records of glycol dehydration unit baseline operations shall be retained as required under §63.774(b)(10). - (2) The owner or operator shall document, to the Administrator's satisfaction, the conditions for which glycol
dehydration unit baseline operations shall be modified to achieve the 95.0 percent overall HAP emission reduction, either through process modifications or through a combination of process modifications and one or more control devices. If a combination of process modifications and one or more control devices are used, the owner or operator shall also establish the percent HAP reduction to be achieved by the control device to achieve an overall HAP emission reduction of 95.0 percent for the glycol dehydration unit process vent. Only modifications in glycol dehydration unit operations directly related to process changes, including, but not limited to, changes in glycol circulation rate or glycol-HAP absorbency, shall be allowed. Changes in the inlet gas characteristics or natural gas throughput rate shall not be considered in determining the overall HAP emission reduction - (3) The owner or operator that achieves a 95.0 percent HAP emission reduction using process modifications alone shall comply with paragraph (e)(3)(i) of this section. The owner or operator that achieves a 95.0 percent HAP emission reduction using a combination of process modifications and one or more control devices shall comply with paragraphs (e)(3)(i) and (e)(3)(ii) of this section. - (i) The owner or operator shall maintain records, as required in §63.774(b)(11), that the facility continues to operate in accordance with the conditions specified under paragraph (e)(2) of this section. (ii) The owner or operator shall comply with the control device requirements specified in paragraph (d) of this section, except that the emission reduction achieved shall be the emission reduction specified for the control device(s) in paragraph (e)(2) of this section. # § 63.772 Test methods, compliance procedures, and compliance demonstrations. - (a) Determination of material VHAP or HAP concentration to determine the applicability of the equipment leak standards under this subpart (§63.769). Each piece of ancillary equipment and compressors are presumed to be in VHAP service or in wet gas service unless an owner or operator demonstrates that the piece of equipment is not in VHAP service or in wet gas service. - (1) For a piece of ancillary equipment and compressors to be considered not in VHAP service, it must be determined that the percent VHAP content can be reasonably expected never to exceed 10.0 percent by weight. For the purposes of determining the percent VHAP content of the process fluid that is contained in or contacts a piece of ancillary equipment or compressor, Method 18 of 40 CFR part 60, appendix A, shall be used. - (2) For a piece of ancillary equipment and compressors to be considered in wet gas service, it must be determined that it contains or contacts the field gas before the extraction of natural gas liquids. - (b) Determination of glycol dehydration unit flowrate or benzene emissions. The procedures of this paragraph shall be used by an owner or operator to determine glycol dehydration unit natural gas flowrate or benzene emissions to meet the criteria for an exemption from control requirements under §63.764(e)(1). - (1) The determination of actual flowrate of natural gas to a glycol dehydration unit shall be made using the procedures of either paragraph (b)(1)(i) or (b)(1)(ii) of this section. - (i) The owner or operator shall install and operate a monitoring instrument that directly measures natural gas flowrate to the glycol dehydration unit with an accuracy of plus or minus 2 percent or better. The owner or operator shall convert annual natural gas flowrate to a daily average by dividing the annual flowrate by the number of days per year the glycol dehydration unit processed natural gas. (ii) The owner or operator shall document, to the Administrator's satisfaction, that the actual annual average natural gas flowrate to the glycol dehydration unit is less than 85 thousand standard cubic meters per day. (2) The determination of actual average benzene emissions from a glycol dehydration unit shall be made using the procedures of either paragraph (b)(2)(i) or (b)(2)(ii) of this section. Emissions shall be determined either uncontrolled, or with federally enforceable controls in place. - (i) The owner or operator shall determine actual average benzene emissions using the model GRI-GLYCalcTM, Version 3.0 or higher, and the procedures presented in the associated GRI-GLYCalcTM Technical Reference Manual. Inputs to the model shall be representative of actual operating conditions of the glycol dehydration unit and may be determined using the procedures documented in the Gas Research Institute (GRI) report entitled "Atmospheric Rich/Lean Method for Determining Glycol Dehydrator Emissions" (GRI-95/0368.1); or - (ii) The owner or operator shall determine an average mass rate of benzene emissions in kilograms per hour through direct measurement by performing three runs of Method 18, 40 CFR Part 60, appendix A (or an equivalent method), and averaging the results of the three runs. Annual emissions in kilograms per year shall be determined by multiplying the mass rate by the number of hours the unit is operated per year. This result shall be converted to megagrams per year. (c) No detectable emissions test procedure. (1) The no detectable emissions test procedure shall be conducted in accordance with Method 21, 40 CFR part 60, appendix A. (2) The detection instrument shall meet the performance criteria of Method 21, 40 CFR part 60, appendix A, except that the instrument response factor criteria in section 3.1.2(a) of Method 21 shall be for the average composi- tion of the fluid and not for each individual organic compound in the stream. - (3) The detection instrument shall be calibrated before use on each day of its use by the procedures specified in Method 21, 40 CFR part 60, appendix A. - (4) Calibration gases shall be as follows: - (i) Zero air (less than $10\ parts\ per$ million by volume hydrocarbon in air); and - (ii) A mixture of methane in air at a concentration less than 10,000 parts per million by volume. - (5) An owner or operator may choose to adjust or not adjust the detection instrument readings to account for the background organic concentration level. If an owner or operator chooses to adjust the instrument readings for the background level, the background level value must be determined according to the procedures in Method 21 of 40 CFR part 60, appendix A. (6)(i) Except as provided in paragraph (c)(6)(i) of this section, the detection instrument shall meet the performance criteria of Method 21 of 40 CFR part 60, appendix A, except the instrument response factor criteria in section 3.1.2(a) of Method 21 shall be for the average composition of the process fluid not each individual volatile organic compound in the stream. For process streams that contain nitrogen, air, or other inerts which are not organic hazardous air pollutants or volatile organic compounds, the average stream response factor shall be calculated on an inert-free basis. (ii) If no instrument is available at the facility that will meet the performance criteria specified in paragraph (c)(6)(i) of this section, the instrument readings may be adjusted by multiplying by the average response factor of the process fluid, calculated on an inert-free basis as described in paragraph (c)(6)(i) of this section. (7) An owner or operator must determine if a potential leak interface operates with no detectable emissions using the applicable procedure specified in paragraph (c)(7)(i) or (c)(7)(ii) of this section. (i) If an owner or operator chooses not to adjust the detection instrument readings for the background organic concentration level, then the maximum organic concentration value measured by the detection instrument is compared directly to the applicable value for the potential leak interface as specified in paragraph (c)(8) of this section. - (ii) If an owner or operator chooses to adjust the detection instrument readings for the background organic concentration level, the value of the arithmetic difference between the maximum organic concentration value measured by the instrument and the background organic concentration value as determined in paragraph (c)(5) of this section is compared with the applicable value for the potential leak interface as specified in paragraph (c)(8) of this section. - (8) A potential leak interface is determined to operate with no detectable organic emissions if the organic concentration value determined in paragraph (c)(7) of this section, is less than 500 parts per million by volume. (d) [Reserved] - (e) Control device performance test procedures. This paragraph applies to the performance testing of control devices. The owners or operators shall demonstrate that a control device achieves performance requirements of $\S63.771(d)(1)$ or (e)(3)(ii) using either a performance test as specified in paragraph (e)(3) of this section or a design analysis as specified in paragraph (e)(4) of this section. The owner or operator may elect to use the alternative procedures in paragraph (e)(5) of this section for performance testing of a condenser used to control emissions from a glycol dehydration unit process vent. - (1) The following control devices are exempt from the requirements to conduct performance tests and design analyses under this section: - (i) A flare that is designed and operated in accordance with §63.11(b); - (ii) A boiler or process heater with a design heat input capacity of 44 megawatts or greater; - (iii) A boiler or process heater into which the vent stream is introduced with the primary fuel or is used as the primary fuel; - (iv) A boiler or process heater burning hazardous waste for which the owner or operator has either been issued a final permit under 40 CFR part 270 and complies with the requirements of 40 CFR part 266, subpart H; or has certified compliance with the interim status requirements of 40 CFR part 266, subpart H; -
(v) A hazardous waste incinerator for which the owner or operator has been issued a final permit under 40 CFR part 270 and complies with the requirements of 40 CFR part 264, subpart O; or has certified compliance with the interim status requirements of 40 CFR part 265, subpart O. - (vi) A control device for which a performance test was conducted for determining compliance with a regulation promulgated by the EPA and the test was conducted using the same methods specified in this section and either no process changes have been made since the test, or the owner or operator can demonstrate that the results of the performance test, with or without adjustments, reliably demonstrate compliance despite process changes. - (2) An owner or operator shall design and operate each flare in accordance with the requirements specified in §63.11(b) and in paragraphs (e)(2)(i) and (e)(2)(ii) of this section. - (i) The compliance determination shall be conducted using Method 22 of 40 CFR part 60, appendix A, to determine visible emissions. - (ii) An owner or operator is not required to conduct a performance test to determine percent emission reduction or outlet organic HAP or TOC concentration when a flare is used. - (3) For a performance test conducted to demonstrate that a control device meets the requirements of $\S63.771(d)(1)$ or (e)(3)(ii), the owner or operator shall use the test methods and procedures specified in paragraphs (e)(3)(i) through (e)(3)(iv) of this section. The performance test shall be conducted according to the schedule specified in $\S63.7(a)(2)$ and the results of the performance test shall be submitted in the Notification of Compliance Status Report as required in $\S63.775(d)(1)(ii)$. - (i) Method 1 or 1A, 40 CFR part 60, appendix A, as appropriate, shall be used for selection of the sampling sites in paragraphs (e)(3)(i)(A) and (B) of this section. Any references to particulate mentioned in Methods 1 and 1A do not apply to this section. (A) To determine compliance with the control device percent reduction requirement specified in §63.771(d)(1)(i)(A), (d)(1)(ii) or (e)(3)(ii), sampling sites shall be located at the inlet of the first control device, and at the outlet of the final control device. (B) To determine compliance with the enclosed combustion device total HAP concentration limit specified in $\S 63.771(d)(1)(i)(B)$, the sampling site shall be located at the outlet of the combustion device. (ii) The gas volumetric flowrate shall be determined using Method 2, 2A, 2C, or 2D, 40 CFR part 60, appendix A, as appropriate. - (iii) To determine compliance with the control device percent reduction performance requirement in §63.771(d)(1)(i)(A),(d)(1)(ii), and (e)(3)(ii), the owner or operator shall use either Method 18, 40 CFR part 60, appendix A or Method 25A, 40 CFR part 60, appendix A; alternatively, any other method or data that have been validated according to the applicable procedures in Method 301, 40 CFR part 63, appendix A, may be used. The following procedures shall be used to calculate percent reduction efficiency: - (A) The minimum sampling time for each run shall be 1 hour in which either an integrated sample or a minimum of four grab samples shall be taken. If grab sampling is used, then the samples shall be taken at approximately equal intervals in time, such as 15-minute intervals during the run. - (B) The mass rate of either TOC (minus methane and ethane) or total HAP $(E_i,\,E_o)$ shall be computed. - (1) The following equations shall be used: ER17JN99.000 ER17JN99.001 # Where: C_{ij} , C_{oj} = Concentration of sample component j of the gas stream at the inlet and outlet of the control device, respectively, dry basis, parts per million by volume. E_i, E_o = Mass rate of TOC (minus methane and ethane) or total HAP at the inlet and outlet of the control device, respectively, dry basis, kilogram per hour. M_{ij} , M_{oj} = Molecular weight of sample component j of the gas stream at the inlet and outlet of the control device, respectively, gram/gram-mole. Q_i, Q_o = Flowrate of gas stream at the inlet and outlet of the control device, respectively, dry standard cubic meter per minute. $K_2 = \mbox{Constant}, \ 2.494 \mbox{x} 10^{-6}$ (parts per million) (gram-mole per standard cubic meter) (kilogram/gram) (minute/hour), where standard temperature (gram-mole per standard cubic meter) is $20^{\circ}\mbox{C}.$ - (2) When the TOC mass rate is calculated, all organic compounds (minus methane and ethane) measured by Method 18, 40 CFR part 60, appendix A, or Method 25A, 40 CFR part 60, appendix A, shall be summed using the equations in paragraph (e)(3)(iii)(B)(1) of this section. - (3) When the total HAP mass rate is calculated, only HAP chemicals listed in Table 1 of this subpart shall be summed using the equations in paragraph (e)(3)(iii)(B)(\it{I}) of this section. - (C) The percent reduction in TOC (minus methane and ethane) or total HAP shall be calculated as follows: ER17JN99.002 #### Where: $R_{\rm cd}$ = Control efficiency of control device, percent. - E_i = Mass rate of TOC (minus methane and ethane) or total HAP at the inlet to the control device as calculated under paragraph (e)(3)(iii)(B) of this section, kilograms TOC per hour or kilograms HAP per hour. - $E_{\rm o}$ = Mass rate of TOC (minus methane and ethane) or total HAP at the outlet of the control device, as calculated under paragraph (e)(3)(iii)(B) of this section, kilograms TOC per hour or kilograms HAP per hour. - (D) If the vent stream entering a boiler or process heater with a design capacity less than 44 megawatts is introduced with the combustion air or as a secondary fuel, the weight-percent reduction of total HAP or TOC (minus methane and ethane) across the device shall be determined by comparing the TOC (minus methane and ethane) or total HAP in all combusted vent streams and primary and secondary fuels with the TOC (minus methane and ethane) or total HAP exiting the device, respectively. (iv) To determine compliance with the enclosed combustion device total HAP concentration limit specified in §63.771(d)(1)(i)(B), the owner or operator shall use either Method 18, 40 CFR part 60, appendix A, or Method 25A, 40 CFR part 60, appendix A, to measure either TOC (minus methane and ethane) or total HAP. Alternatively, any other method or data that have been validated according to Method 301 of appendix A of this part, may be used. The following procedures shall be used to calculate parts per million by volume concentration, corrected to 3 percent oxygen: (A) The minimum sampling time for each run shall be 1 hour, in which either an integrated sample or a minimum of four grab samples shall be taken. If grab sampling is used, then the samples shall be taken at approximately equal intervals in time, such as 15-minute intervals during the run. (B) The TOC concentration or total HAP concentration shall be calculated according to paragraph (e)(3)(iv)(B)(1) or (e)(3)(iv)(B)(2) of this section. (1) The TOC concentration is the sum of the concentrations of the individual components and shall be computed for each run using the following equation: ER17JN99.003 # Where: C_{TOC} =entration of total organic compounds minus methane and ethane, dry basis, parts per million by volume. - C_{ji} = Concentration of sample component j of sample i, dry basis, parts per million by volume. - n = Number of components in the sample. - x = Number of samples in the sample run. (2) The total HAP concentration shall be computed according to the equation in paragraph (e)(3)(iv)(B)(1) of this section, except that only HAP chemicals listed in Table 1 of this subpart shall be summed. (C) The TOC concentration or total HAP concentration shall be corrected to 3 percent oxygen as follows: (1) The emission rate correction factor for excess air, integrated sampling and analysis procedures of Method 3B, 40 CFR part 60, appendix A, shall be used to determine the oxygen concentration. The samples shall be taken during the same time that the samples are taken for determining TOC concentration or total HAP concentration. (2) The TOC or HAP concentration shall be corrected for percent oxygen by using the following equation: ER17JN99.004 # Where: C_c = TOC concentration or total HAP concentration corrected to 3 percent oxygen, dry basis, parts per million by volume. C_{m} = TOC concentration or total HAP concentration, dry basis, parts per million by volume. $%O_{2d}$ = Concentration of oxygen, dry basis, percent by volume. (4) For a design analysis conducted to meet the requirements of $\S63.771(d)(1)$ or (e)(3)(ii), the owner or operator shall meet the requirements specified in paragraphs (e)(4)(i) and (e)(4)(ii) of this section. Documentation of the design analysis shall be submitted as a part of the Notification of Compliance Status Report as required in $\S63.775(d)(1)(i)$. (i) The design analysis shall include analysis of the vent stream characteristics and control device operating parameters for the applicable control device as specified in paragraphs (e)(4)(i)(A) through (F) of this section. (A) For a thermal vapor incinerator, the design analysis shall include the vent stream composition, constituent concentrations, and flowrate and shall establish the design minimum and average temperatures in the combustion zone and the combustion zone residence time. (B) For a catalytic vapor incinerator, the design analysis shall include the vent stream composition, constituent concentrations, and flowrate and shall establish the design minimum and average temperatures across the catalyst bed inlet and outlet, and the design service life of the catalyst. (C) For a boiler or process heater, the design analysis shall include the vent stream composition, constituent concentrations, and flowrate; shall establish the design minimum and average flame zone temperatures and combustion zone residence time; and shall describe the method and location where the
vent stream is introduced into the flame zone. (D) For a condenser, the design analysis shall include the vent stream composition, constituent concentrations, flowrate, relative humidity, and temperature, and shall establish the design outlet organic compound concentration level, design average temperature of the condenser exhaust vent stream, and the design average temperatures of the coolant fluid at the condenser inlet and outlet. As an alternative to the design analysis, an owner or operator may elect to use the procedures specified in paragraph (e)(5) of this section. (E) For a regenerable carbon adsorption system, the design analysis shall include the vent stream composition, constituent concentrations, flowrate, relative humidity, and temperature, and shall establish the design exhaust vent stream organic compound concentration level, adsorption cycle time, number and capacity of carbon beds, type and working capacity of activated carbon used for the carbon beds, design total regeneration stream flow over the period of each complete carbon bed regeneration cycle, design carbon bed temperature after regeneration, design carbon bed regeneration time, and design service life of the carbon. (F) For a nonregenerable carbon adsorption system, such as a carbon canister, the design analysis shall include the vent stream composition, constituent concentrations, flowrate, relative humidity, and temperature, and shall establish the design exhaust vent stream organic compound concentration level, capacity of the carbon bed, type and working capacity of activated carbon used for the carbon bed, and design carbon replacement interval based on the total carbon working capacity of the control device and source operating schedule. In addition, these systems will incorporate dual carbon canisters in case of emission breakthrough occurring in one canister. (ii) If the owner or operator and the Administrator do not agree on a demonstration of control device performance using a design analysis then the disagreement shall be resolved using the results of a performance test performed by the owner or operator in accordance with the requirements of paragraph (e)(3) of this section. The Administrator may choose to have an authorized representative observe the performance test. (5) As an alternative to the procein dures paragraphs (e)(3)(e)(4)(i)(D) of this section, an owner or operator may elect to use the procedures documented in the GRI report entitled, 'Atmospheric Rich/Lean Method for Determining Glycol Dehydrator Emissions'' (GRI-95/0368.1) as inputs for the model GRI-GLYCalcTM, Version 3.0 or higher, to determine condenser performance. (f) Compliance demonstration for control device performance requirements. This paragraph applies to the demonstration of compliance with the control device performance requirements specified in §§ 63.771(d)(1)(ii) 63.765(c)(2). Compliance shall be demonstrated using the requirements in paragraphs (f)(1) through (f)(3) of this section. As an alternative, an owner or operator that installs a condenser as the control device to achieve the requirements specified in §63.771(d)(1)(ii) or §63.765(c)(2), may demonstrate compliance according to paragraph (g) of this section. An owner or operator may switch between compliance with paragraph (f) of this section and compliance with paragraph (g) of this section only after at least 1 year of operation in compliance with the selected approach. Notification of such a change in the compliance method shall be reported in the next Periodic Report, as required in §63.775(e), following the change. (1) The owner or operator shall establish a site specific maximum or minimum monitoring parameter value (as appropriate) according to the requirements of §63.773(d)(5)(i). (2) The owner or operator shall calculate the daily average of the applicable monitored parameter in accordance with §63.773(d)(4). (3) Compliance with the operating parameter limit is achieved when the daily average of the monitoring parameter value calculated under paragraph (f)(2) of this section is either equal to or greater than the minimum or equal to or less than the maximum monitoring value established under paragraph (f)(1) of this section. (g) Compliance demonstration with percent reduction performance requirements—condensers. This paragraph applies to the demonstration of compliance with the performance requirements specified in §63.771(d)(1)(ii) or §63.765(c)(2) for condensers. Compliance shall be demonstrated using the procedures in paragraphs (g)(1) through (g)(3) of this section. (1) The owner or operator shall establish a site-specific condenser performance curve according to §63.773(d)(5)(ii). (2) Compliance with the percent reduction requirement in $\S63.771(d)(1)(ii)$ or $\S63.765(c)(2)$ shall be demonstrated by the procedures in paragraphs (g)(2)(i) through (g)(2)(iii) of this section. (i) The owner or operator must calculate the daily average condenser outlet temperature in accordance with $\S 63.773(d)(4)$. (ii) The owner or operator shall determine the condenser efficiency for the current operating day using the daily average condenser outlet temperature calculated under paragraph (g)(2)(i) of this section and the condenser performance curve established under paragraph (g)(1) of this section. (iii) Except as provided in paragraphs (g)(2)(iii) (A) and (B) of this section, at the end of each operating day, the owner or operator shall calculate the 365-day average HAP emission reduction from the condenser efficiencies determined in paragraph (g)(2)(ii) of this section for the preceding 365 operating days. If the owner or operator uses a combination of process modifications and a condenser in accordance with the requirements of §63.765(c)(2), the 365day average HAP emission reduction shall be calculated using the emission reduction achieved through process modifications and the condenser effidetermined in paragraph (g)(2)(ii) of this section, both for the previous 365 operating days. (A) After the compliance dates specified in §63.760(f), an owner or operator with less than 120 days of data for determining average HAP emission reduction, shall calculate the average HAP emission reduction for the first 120 days of operation after the compliance dates. Compliance with the performance requirements is achieved if the 120-day average HAP emission reduction is equal to or greater than 90.0 percent. (B) After 120 days and no more than 364 days of operation after the compliance dates specified in §63.760(f), the owner or operator shall calculate the average HAP emission reduction as the HAP emission reduction averaged over the number of days between the current day and the applicable compliance date. Compliance with the performance requirements is achieved if the average HAP emission reduction is equal to or greater than 90.0 percent. (3) If the owner or operator has data for 365 days or more of operation, compliance is achieved with the emission limitation specified in §63.771(d)(1)(ii) or §63.765(c)(2) if the average HAP emission reduction calculated in paragraph (g)(2)(iii) of this section is equal to or greater than 95.0 percent. # §63.773 Inspection and monitoring requirements. - (a) This section applies to an owner or operator using air emission controls in accordance with the requirements of §§ 63.765 and 63.766. - (b) [Reserved] - (c) Cover and closed-vent system inspection and monitoring requirements. (1) For each closed-vent system or cover required to comply with this section, the owner or operator shall comply with the requirements of paragraphs (c) (2) through (7) of this section. - (2) Except as provided in paragraphs (c) (5) and (6) of this section, each closed-vent system shall be inspected according to the procedures and schedule specified in paragraphs (c)(2) (i) and (ii) of this section, and each cover shall be inspected according to the procedures and schedule specified in paragraph (c)(2)(iii) of this section. (i) For each closed-vent system joints, seams, or other connections that are permanently or semi-permanently sealed (e.g., a welded joint between two sections of hard piping or a bolted and gasketed ducting flange), the owner or operator shall: - (A) Conduct an initial inspection according to the procedures specified in §63.772(c) to demonstrate that the closed-vent system operates with no detectable emissions. - (B) Conduct annual visual inspections for defects that could result in air emissions. Defects include, but are not limited to, visible cracks, holes, or gaps in piping; loose connections; or broken or missing caps or other closure devices. The owner or operator shall monitor a component or connection using the procedures in §63.772(c) to demonstrate that it operates with no detectable emissions following any time the component is repaired or replaced or the connection is unsealed. - (ii) For closed-vent system components other than those specified in paragraph (c)(2)(i) of this section, the owner or operator shall: - (A) Conduct an initial inspection according to the procedures specified in §63.772(c) to demonstrate that the closed-vent system operates with no detectable emissions. - (B) Conduct annual inspections according to the procedures specified in §63.772(c) to demonstrate that the components or connections operate with no detectable emissions. - (C) Conduct annual visual inspections for defects that could result in air emissions. Defects include, but are not limited to, visible cracks, holes, or gaps in ductwork; loose connections; or broken or missing caps or other closure devices. - (iii) For each cover, the owner or operator shall: - (A) Conduct visual inspections for defects that could result in air emissions. Defects include, but are not limited to, visible cracks, holes, or gaps in the cover, or between the cover and the separator wall; broken, cracked, or otherwise damaged seals or gaskets on closure devices; and broken or missing
hatches, access covers, caps, or other closure devices. In the case where the tank is buried partially or entirely underground, inspection is required only for those portions of the cover that extend to or above the ground surface, and those connections that are on such portions of the cover (e.g., fill ports, access hatches, gauge wells, etc.) and can be opened to the atmosphere. - (B) The inspections shall be conducted initially, following the installation of the cover. Thereafter, the owner or operator shall perform the inspection at least once every calendar year, except as provided in paragraphs (c) (5) and (6) of this section. - (3) In the event that a leak or defect is detected, the owner or operator shall repair the leak or defect as soon as practicable, except as provided in paragraph (c)(4) of this section. - (i) A first attempt at repair shall be made no later than 5 calendar days after the leak is detected. - (ii) Repair shall be completed no later than 15 calendar days after the leak is detected. - (4) Delay of repair of a closed-vent system or cover for which leaks or defects have been detected is allowed if the repair is technically infeasible without a shutdown, as defined in §63.761, or if the owner or operator determines that emissions resulting from immediate repair would be greater than the fugitive emissions likely to result from delay of repair. Repair of such equipment shall be complete by the end of the next shutdown. - (5) Any parts of the closed-vent system or cover that are designated, as described in paragraphs (c)(5) (i) and (ii) of this section, as unsafe to inspect are exempt from the inspection requirements of paragraphs (c)(2)(i), (ii), and (iii) of this section if: - (i) The owner or operator determines that the equipment is unsafe to inspect because inspecting personnel would be exposed to an imminent or potential danger as a consequence of complying with paragraphs (c)(2)(i), (ii), or (iii) of this section; and - (ii) The owner or operator has a written plan that requires inspection of the equipment as frequently as practicable during safe-to-inspect times. - (6) Any parts of the closed-vent system or cover that are designated, as described in paragraphs (c)(6) (i) and (ii) of this section, as difficult to inspect are exempt from the inspection requirements of paragraphs (c)(2)(i), (ii), and (iii) of this section if: - (i) The owner or operator determines that the equipment cannot be inspected without elevating the inspecting personnel more than 2 meters above a support surface; and - (ii) The owner or operator has a written plan that requires inspection of the equipment at least once every 5 years. - (7) Records shall be maintained as specified in §63.774(b)(5) through (8). - (d) Control device monitoring requirements. (1) For each control device, except as provided for in paragraph (d)(2) of this section, the owner or operator shall install and operate a continuous parameter monitoring system in accordance with the requirements of paragraphs (d)(3) through (9) of this section. The continuous monitoring system shall be designed and operated so that a determination can be made on whether the control device is achieving the applicable performance requirements of §63.771(d) §63.771(e)(3). The continuous parameter monitoring system shall meet the following specifications and requirements: - (i) Each continuous parameter monitoring system shall measure data values at least once every hour and record either: - (A) Each measured data value; or - (B) Each block average value for each 1-hour period or shorter periods calculated from all measured data values during each period. If values are measured more frequently than once per minute, a single value for each minute may be used to calculate the hourly (or shorter period) block average instead of all measured values. - (ii) The monitoring system must be installed, calibrated, operated, and maintained in accordance with the manufacturer's specifications or other written procedures that provide reasonable assurance that the monitoring equipment is operating properly. - (2) An owner or operator is exempt from the monitoring requirements specified in paragraphs (d)(3) through (9) of this section for the following types of control devices: - (i) A boiler or process heater in which all vent streams are introduced with the primary fuel or is used as the primary fuel; or - (ii) A boiler or process heater with a design heat input capacity equal to or greater than 44 megawatts. - (3) The owner or operator shall install, calibrate, operate, and maintain a device equipped with a continuous recorder to measure the values of operating parameters appropriate for the control device as specified in either paragraph (d)(3)(i), (d)(3)(ii), or (d)(3)(iii) of this section. - (i) A continuous monitoring system that measures the following operating parameters as applicable: - (A) For a thermal vapor incinerator, a temperature monitoring device equipped with a continuous recorder. The monitoring device shall have a minimum accuracy of ± 2 percent of the temperature being monitored in °C ,or ± 2.5 °C, whichever value is greater. The temperature sensor shall be installed at a location in the combustion chamber downstream of the combustion zone. - (B) For a catalytic vapor incinerator, a temperature monitoring device equipped with a continuous recorder. The device shall be capable of monitoring temperature at two locations and have a minimum accuracy of ± 2 percent of the temperature being monitored in °C, or ± 2.5 °C, whichever value is greater. One temperature sensor shall be installed in the vent stream at the nearest feasible point to the catalyst bed inlet and a second temperature sensor shall be installed in the vent stream at the nearest feasible point to the catalyst bed outlet. - (C) For a flare, a heat sensing monitoring device equipped with a continuous recorder that indicates the continuous ignition of the pilot flame. - (D) For a boiler or process heater with a design heat input capacity of less than 44 megawatts, a temperature monitoring device equipped with a continuous recorder. The temperature monitoring device shall have a minimum accuracy of ± 2 percent of the temperature being monitored in °C, or ± 2.5 °C, whichever value is greater. The temperature sensor shall be installed at a location in the combustion chamber downstream of the combustion zone. - (E) For a condenser, a temperature monitoring device equipped with a continuous recorder. The temperature monitoring device shall have a minimum accuracy of ± 2 percent of the temperature being monitored in °C, or ± 2.5 °C, whichever value is greater. The temperature sensor shall be installed at a location in the exhaust vent stream from the condenser. - (F) For a regenerative-type carbon adsorption system: - (I) A continuous parameter monitoring system to measure and record the average total regeneration stream mass flow or volumetric flow during each carbon bed regeneration cycle. The integrating regenerating stream flow monitoring device must have an accuracy of ± 10 percent; and - (2) A continuous parameter monitoring system to measure and record the average carbon bed temperature for the duration of the carbon bed steaming cycle and to measure the actual carbon bed temperature after regeneration and within 15 minutes of completing the cooling cycle. The temperature monitoring device shall have a minimum accuracy of ±2 percent of the temperature being monitored in °C, or ±2.5 °C, whichever value is greater. - (G) For a nonregenerative-type carbon adsorption system, the owner or operator shall monitor the design carbon replacement interval established using a performance test performed in accordance with §63.772(e)(3) or a design analysis in accordance with §63.772(e)(4)(i)(F) and shall be based on the total carbon working capacity of the control device and source operating schedule. - (ii) A continuous monitoring system that measures the concentration level of organic compounds in the exhaust vent stream from the control device using an organic monitoring device equipped with a continuous recorder. The monitor must meet the requirements of Performance Specification 8 or 9 of appendix B of 40 CFR part 60 and must be installed, calibrated, and maintained according to the manufacturer's specifications. - (iii) A continuous monitoring system that measures alternative operating parameters other than those specified in paragraph (d)(3)(i) or (d)(3)(ii) of this - section upon approval of the Administrator as specified in §63.8(f)(1) through (5) - (4) Using the data recorded by the monitoring system, the owner or operator must calculate the daily average value for each monitored operating parameter for each operating day. If the HAP emissions unit operation is continuous, the operating day is a 24-hour period. If HAP emissions unit operation is not continuous, the operating day is the total number of hours of control device operation per 24-hour period. Valid data points must be available for 75 percent of the operating hours in an operating day to compute the daily average. - (5) For each operating parameter monitor installed in accordance with the requirements of paragraph (d)(3) of this section, the owner or operator shall comply with paragraph (d)(5)(i) of this section for all control devices except for condensers, and when condensers are installed, the owner or operator shall also comply with paragraph (d)(5)(ii) of this section. - (i) The owner or operator shall establish a minimum operating parameter value or a maximum operating parameter value, as appropriate for the control device, to define the conditions at which the control device must be operated to continuously achieve the applicable performance requirements of §63.771(d)(1) or §63.771(e)(3)(ii). Each minimum or maximum operating parameter value shall be established as follows: - (A) If the owner
or operator conducts performance tests in accordance with the requirements of §63.772(e)(3) to demonstrate that the control device achieves the applicable performance requirements specified in §63.771(d)(1) or §63.771(e)(3)(ii), then the minimum operating parameter value or the maximum operating parameter value shall be established based on values measured during the performance test and supplemented, as necessary, by control device design analysis or control device manufacturer recommendations or a combination of both. - (B) If the owner or operator uses a control device design analysis in accordance with the requirements of §63.772(e)(4) to demonstrate that the control device achieves the applicable performance requirements specified in $\S 63.771(d)(1)$ or (e)(3)(ii), then the minimum operating parameter value or the maximum operating parameter value shall be established based on the control device design analysis and may be supplemented by the control device manufacturer's recommendations. - (ii) The owner or operator shall establish a condenser performance curve showing the relationship between condenser outlet temperature and condenser control efficiency. The curve shall be established as follows: - (A) If the owner or operator conducts a performance test in accordance with the requirements of $\S63.772(e)(3)$ to demonstrate that the condenser achieves the applicable performance requirements in $\S63.771(d)(1)$ or (e)(3)(ii), then the condenser performance curve shall be based on values measured during the performance test and supplemented as necessary by control device design analysis, or control device manufacturer's recommendations, or a combination or both. - (B) If the owner or operator uses a control device design analysis in accordance with the requirements of §63.772(e)(4)(i)(D) to demonstrate that the condenser achieves the applicable performance requirements specified in §63.771(d)(1) or (e)(3)(ii), then the condenser performance curve shall be based on the condenser design analysis and may be supplemented by the control device manufacturer's recommendations. - (C) As an alternative to paragraphs (d)(5)(ii)(A) and (B) of this section, the owner or operator may elect to use the procedures documented in the GRI report entitled, "Atmospheric Rich/Lean Method for Determining Glycol Dehydrator Emissions" (GRI–95/0368.1) as inputs for the model GRI–GLYCalc $^{\text{TM}}$, Version 3.0 or higher, to generate a condenser performance curve. - (6) An excursion for a given control device is determined to have occurred when the monitoring data or lack of monitoring data result in any one of the criteria specified in paragraphs (d)(6)(i) through (d)(6)(v) of this section being met. When multiple operating parameters are monitored for the same control device and during the same op- erating day and more than one of these operating parameters meets an excursion criterion specified in paragraphs (d)(6)(i) through (d)(6)(v) of this section, then a single excursion is determined to have occurred for the control device for that operating day. - (i) An excursion occurs when the daily average value of a monitored operating parameter is less than the minimum operating parameter limit (or, if applicable, greater than the maximum operating parameter limit) established for the operating parameter in accordance with the requirements of paragraph (d)(5)(i) of this section. - (ii) An excursion occurs when the 365-day average condenser efficiency calculated according to the requirements specified in §63.772(g)(2)(iii) is less than 95.0 percent. - (iii) If an owner or operator has less than 365 days of data, an excursion occurs when the average condenser efficiency calculated according to the procedures specified in §63.772(g)(2)(iii)(A) or (B) is less than 90.0 percent. - (iv) An excursion occurs when the monitoring data are not available for at least 75 percent of the operating hours. - (v) If the closed-vent system contains one or more bypass devices that could be used to divert all or a portion of the gases, vapors, or fumes from entering the control device, an excursion occurs when: - (A) For each bypass line subject to $\S63.771(c)(3)(i)(A)$ the flow indicator indicates that flow has been detected and that the stream has been diverted away from the control device to the atmosphere. - (B) For each bypass line subject to \$63.771(c)(3)(i)(B), if the seal or closure mechanism has been broken, the bypass line valve position has changed, the key for the lock-and-key type lock has been checked out, or the car-seal has broken. - (7) For each excursion, except as provided for in paragraph (d)(8) of this section, the owner or operator shall be deemed to have failed to have applied control in a manner that achieves the required operating parameter limits. Failure to achieve the required operating parameter limits is a violation of this standard. - (8) An excursion is not a violation of the operating parameter limit as specified in paragraphs (d)(8)(i) and (d)(8)(ii) of this section. - (i) An excursion does not count toward the number of excused excursions allowed under paragraph (d)(8)(ii) of this section when the excursion occurs during any one of the following periods: - (A) During a period of startup, shutdown, or malfunction when the affected facility is operated during such period in accordance with the facility's startup, shutdown, and malfunction plan; or - (B) During periods of non-operation of the unit or the process that is vented to the control device (resulting in cessation of HAP emissions to which the monitoring applies). - (ii) For each control device, or combinations of control devices installed on the same HAP emissions unit, one excused excursion is allowed per semi-annual period for any reason. The initial semiannual period is the 6-month reporting period addressed by the first Periodic Report submitted by the owner or operator in accordance with §63.775(e) of this subpart. - (9) Nothing in paragraphs (d)(1) through (d)(8) of this section shall be construed to allow or excuse a monitoring parameter excursion caused by any activity that violates other applicable provisions of this subpart. # §63.774 Recordkeeping requirements. - (a) The recordkeeping provisions of 40 CFR part 63, subpart A, that apply and those that do not apply to owners and operators of sources subject to this subpart are listed in Table 2 of this subpart. - (b) Except as specified in paragraphs (c) and (d) of this section, each owner or operator of a facility subject to this subpart shall maintain the records specified in paragraphs (b)(1) through (b)(11) of this section: - (1) The owner or operator of an affected source subject to the provisions of this subpart shall maintain files of all information (including all reports and notifications) required by this subpart. The files shall be retained for at least 5 years following the date of each occurrence, measurement, mainte- nance, corrective action, report or period. - (i) All applicable records shall be maintained in such a manner that they can be readily accessed. - (ii) The most recent 12 months of records shall be retained on site or shall be accessible from a central location by computer or other means that provides access within 2 hours after a request. - (iii) The remaining 4 years of records may be retained offsite. - (iv) Records may be maintained in hard copy or computer-readable form including, but not limited to, on paper, microfilm, computer, floppy disk, magnetic tape, or microfiche. - (2) Records specified in §63.10(b)(2); - (3) Records specified in §63.10(c) for each monitoring system operated by the owner or operator in accordance with the requirements of §63.773(d). Notwithstanding the requirements of \$63.776(d). Notwithstanding the requirements of \$63.10(c), monitoring data recorded during periods identified in paragraphs (b)(3)(i) through (b)(3)(iv) of this section shall not be included in any average or percent leak rate computed under this subpart. Records shall be kept of the times and durations of all such periods and any other periods during process or control device operation when monitors are not operating. - (i) Monitoring system breakdowns, repairs, calibration checks, and zero (low-level) and high-level adjustments; - (ii) Startups, shutdowns, or malfunctions events. During startups, shutdowns, or malfunction events, the owner or operator shall maintain records indicating whether or not the startup, shutdown or malfunction plan required under §63.762(d), was followed. - (iii) Periods of non-operation resulting in cessation of the emissions to which the monitoring applies; and - (iv) Excursions due to invalid data as defined in §63.773(d)(6)(iv). - (4) Each owner or operator using a control device to comply with §63.764 of this subpart shall keep the following records up-to-date and readily accessible: - (i) Continuous records of the equipment operating parameters specified to be monitored under §63.773(d) of this subpart or specified by the Administrator in accordance with §63.773(d)(3)(iii) of this subpart. For flares, the hourly records and records of pilot flame outages specified in §63.773(d)(3)(i)(C) of this subpart shall be maintained in place of continuous records. - (ii) Records of the daily average value of each continuously monitored parameter for each operating day determined according to the procedures specified in §63.773(d)(4) of this subpart, except as specified in paragraphs (b)(4)(ii)(A) and (B) of this section. - (A) For flares, records of the times and duration of all periods during which all pilot flames are absent shall be kept rather than daily averages. - (B) For condensers installed to comply with §63.765, records of the annual 365-day rolling average condenser efficiency determined under §63.772(g) shall be kept in addition to the daily averages. - (iii) Hourly records of whether the flow indicator specified under
§63.771(c)(3)(i)(A) was operating and whether flow was detected at any time during the hour, as well as records of the times and durations of all periods when the vent stream is diverted from the control device or the monitor is not operating. - (iv) Where a seal or closure mechanism is used to comply with §63.771(c)(3)(i)(B), hourly records of flow are not required. In such cases, the owner or operator shall record that the monthly visual inspection of the seals or closure mechanism has been done, and shall record the duration of all periods when the seal mechanism is broken, the bypass line valve position has changed, or the key for a lock-and-key type lock has been checked out, and records of any car-seal that has broken. - (5) Records identifying all parts of the cover or closed-vent system that are designated as unsafe to inspect in accordance with §63.773(c)(5), an explanation of why the equipment is unsafe to inspect, and the plan for inspecting the equipment. - (6) Records identifying all parts of the cover or closed-vent system that are designated as difficult to inspect in accordance with $\S63.773(c)(6)$, an explanation of why the equipment is dif- ficult to inspect, and the plan for inspecting the equipment. - (7) For each inspection conducted in accordance with §63.773(c), during which a leak or defect is detected, a record of the information specified in paragraphs (b)(7)(i) through (b)(7)(viii) of this section. - (i) The instrument identification numbers, operator name or initials, and identification of the equipment. - (ii) The date the leak or defect was detected and the date of the first attempt to repair the leak or defect. - (iii) Maximum instrument reading measured by the method specified in §63.772(c) after the leak or defect is successfully repaired or determined to be nonrepairable. - (iv) "Repair delayed" and the reason for the delay if a leak or defect is not repaired within 15 calendar days after discovery of the leak or defect. - (v) The name, initials, or other form of identification of the owner or operator (or designee) whose decision it was that repair could not be effected without a shutdown. - (vi) The expected date of successful repair of the leak or defect if a leak or defect is not repaired within 15 calendar days. - (vii) Dates of shutdowns that occur while the equipment is unrepaired. - (viii) The date of successful repair of the leak or defect. - (8) For each inspection conducted in accordance with §63.773(c) during which no leaks or defects are detected, a record that the inspection was performed, the date of the inspection, and a statement that no leaks were detected. - (9) Records identifying ancillary equipment and compressors that are subject to and controlled under the provisions of 40 CFR part 60, subpart KKK; 40 CFR part 61, subpart V; or 40 CFR part 63, subpart H. - (10) Records of glycol dehydration unit baseline operations calculated as required under §63.771(e)(1). - (11) Records required in \$63.771(e)(3)(i) documenting that the facility continues to operate under the conditions specified in \$63.771(e)(2). - (c) An owner or operator that elects to comply with the benzene emission limit specified in §63.765(b)(1)(ii) shall document, to the Administrator's satisfaction, the following items: - (1) The method used for achieving compliance and the basis for using this compliance method; and - (2) The method used for demonstrating compliance with 0.90 megagrams per year of benzene. - (3) Any information necessary to demonstrate compliance as required in the methods specified in paragraphs (c)(1) and (c)(2) of this section. - (d) (1) An owner or operator that is exempt from control requirements under $\S63.764(e)(1)$ shall maintain the records specified in paragraph (d)(1)(i) or (d)(1)(ii) of this section, as appropriate, for each glycol dehydration unit that is not controlled according to the requirements of $\S63.764(c)(1)(i)$. - (i) The actual annual average natural gas throughput (in terms of natural gas flowrate to the glycol dehydration unit per day) as determined in accordance with §63.772(b)(1), or - (ii) The actual average benzene emissions (in terms of benzene emissions per year) as determined in accordance with §63.772(b)(2). - (2) An owner or operator that is exempt from the control requirements under §63.764(e)(2) of this subpart shall maintain the following records: - (i) Information and data used to demonstrate that a piece of equipment is not in VHAP service or not in wet gas service shall be recorded in a log that is kept in a readily accessible location. - (ii) Identification and location of equipment, located at a natural gas processing plant subject to this subpart, that is in VHAP service less than 300 hours per year. - (e) Record the following when using a flare to comply with §63.771(d): - (1) Flare design (i.e., steam-assisted, air-assisted, or non-assisted); - (2) All visible emission readings, heat content determinations, flowrate measurements, and exit velocity determinations made during the compliance determination required by §63.772(e)(2); and - (3) All periods during the compliance determination when the pilot flame is absent. #### §63.775 Reporting requirements. - (a) The reporting provisions of subpart A of this part, that apply and those that do not apply to owners and operators of sources subject to this subpart are listed in Table 2 of this subpart. - (b) Each owner or operator of a major source subject to this subpart shall submit the information listed in paragraphs (b)(1) through (b)(6) of this section, except as provided in paragraphs (b)(7) and (b)(8) of this section. - (1) The initial notifications required for existing affected sources under \$63.9(b)(2) shall be submitted by 1 year after an affected source becomes subject to the provisions of this subpart or by June 17, 2000, whichever is later. Affected sources that are major sources on or before June 17, 2000 and plan to be area sources by June 17, 2002 shall include in this notification a brief, nonbinding description of a schedule for the action(s) that are planned to achieve area source status. - (2) The date of the performance evaluation as specified in §63.8(e)(2), required only if the owner or operator is required by the Administrator to conduct a performance evaluation for a continuous monitoring system. A separate notification of the performance evaluation is not required if it is included in the initial notification submitted in accordance with paragraph (b)(1) of this section. - (3) The planned date of a performance test at least 60 days before the test in accordance with §63.7(b). Unless requested by the Administrator, a site-specific test plan is not required by this subpart. If requested by the Administrator, the owner or operator must also submit the site-specific test plan required by §63.7(c) with the notification of the performance test. A separate notification of the performance test is not required if it is included in the initial notification submitted in accordance with paragraph (b)(1) of this section. - (4) A Notification of Compliance Status report as described in paragraph (d) of this section; - (5) Periodic Reports as described in paragraph (e) of this section; and - (6) Startup, shutdown, and malfunction reports specified in §63.10(d)(5) shall be submitted as required. Separate startup, shutdown, and malfunction reports as described in §63.10(d)(5) are not required if the information is included in the Periodic Report specified in paragraph (e) of this section. - (7) Each owner or operator of a glycol dehydration unit subject to this subpart that is exempt from the control requirements for glycol dehydration unit process vents in §63.765, is exempt from all reporting requirements for major sources in this subpart, for that unit. - (8) Each owner or operator of ancillary equipment and compressors subject to this subpart that are exempt from the control requirements for equipment leaks in §63.769, are exempt from all reporting requirements for major sources in this subpart, for that equipment. (c) [Reserved] - (d) Each owner or operator of a source subject to this subpart shall submit a Notification of Compliance Status Report as required under §63.9(h) within 180 days after the compliance date specified in §63.760(f). In addition to the information required under §63.9(h), the Notification of Compliance Status Report shall include the information specified in paragraphs (d)(1) through (d)(11) of this section. This information may be submitted in an operating permit application, in an amendment to an operating permit application, in a separate submittal, or in any combination of the three. If all of the information required under this paragraph has been submitted at any time prior to 180 days after the applicable compliance dates specified in §63.760(f), a separate Notification of Compliance Status Report is not required. If an owner or operator submits the information specified in paragraphs (d)(1) through (d)(11) of this section at different times, and/or different submittals, later submittals may refer to earlier submittals instead of duplicating and resubmitting the previously submitted information. - (1) If a closed-vent system and a control device other than a flare are used to comply with §63.764, the owner or operator shall submit: - (i) The design analysis documentation specified in §63.772(e)(4) of this subpart, if the owner or operator elects to prepare a design analysis; or (ii) If the owner or operator elects to conduct a performance test, the performance test results including the information specified in paragraphs (d)(1)(ii)(A) and (B) of this section. Results of a performance test conducted prior to the compliance date of this subpart can be used provided that the test was conducted using the methods specified in §63.772(e)(3) and that the test conditions are representative of current operating conditions. (A) The percent
reduction of HAP or TOC, or the outlet concentration of HAP or TOC (parts per million by volume on a dry basis), determined as specified in §63.772(e)(3) of this subpart; and - (B) The value of the monitored parameters specified in §773(d) of this subpart, or a site-specific parameter approved by the permitting agency, averaged over the full period of the performance test. - (2) If a closed-vent system and a flare are used to comply with §63.764, the owner or operator shall submit performance test results including the information in paragraphs (d)(2) (i) and (ii) of this section. - (i) All visible emission readings, heat content determinations, flowrate measurements, and exit velocity determinations made during the compliance determination required by §63.772(e)(2) of this subpart, and - (ii) A statement of whether a flame was present at the pilot light over the full period of the compliance determination. - (3) For each owner or operator subject to the provisions specified in §63.769, the owner or operator shall submit the information required by §61.247(a), except that the initial report required in §61.247(a) shall be submitted as a part of the Notification of Compliance Status Report required in paragraph (d) of this section. The owner or operator shall also submit the information specified in paragraphs (d)(3) (i) and (ii) of this section. - (i) The number of each equipment (e.g., valves, pumps, etc.) excluding equipment in vacuum service, and - (ii) Any change in the information submitted in this paragraph shall be provided to the Administrator as a part of subsequent Periodic Reports described in paragraph (e)(2)(iv) of this section. - (4) The owner or operator shall submit one complete test report for each test method used for a particular source. - (i) For additional tests performed using the same test method, the results specified in paragraph (d)(1)(ii) of this section shall be submitted, but a complete test report is not required. - (ii) A complete test report shall include a sampling site description, description of sampling and analysis procedures and any modifications to standard procedures, quality assurance procedures, record of operating conditions during the test, record of preparation of standards, record of calibrations, raw data sheets for field sampling, raw data sheets for field and laboratory analyses, documentation of calculations, and any other information required by the test method. - (5) For each control device other than a flare used to meet the requirements of §63.764, the owner or operator shall submit the information specified in paragraphs (d)(5) (i) through (iii) of this section for each operating parameter required to be monitored in accordance with the requirements of §63.773(d). - (i) The minimum operating parameter value or maximum operating parameter value, as appropriate for the control device, established by the owner or operator to define the conditions at which the control device must be operated to continuously achieve the applicable performance requirements of §63.771(d)(1) or (e)(3)(ii). - (ii) An explanation of the rationale for why the owner or operator selected each of the operating parameter values established in §63.773(d)(5). This explanation shall include any data and calculations used to develop the value and a description of why the chosen value indicates that the control device is operating in accordance with the applicable requirements of §63.771(d)(1) or §63.771(e)(3)(ii). - (iii) A definition of the source's operating day for purposes of determining daily average values of monitored parameters. The definition shall specify the times at which an operating day begins and ends. - (6) Results of any continuous monitoring system performance evaluations shall be included in the Notification of Compliance Status Report. - (7) After a title V permit has been issued to the owner or operator of an affected source, the owner or operator of such source shall comply with all requirements for compliance status reports contained in the source's title V permit, including reports required under this subpart. After a title V permit has been issued to the owner or operator of an affected source, and each time a notification of compliance status is required under this subpart, the owner or operator of such source shall submit the notification of compliance status to the appropriate permitting authority following completion of the relevant compliance demonstration activity specified in this subpart. - (8) The owner or operator that elects to comply with the requirements of §63.765(b)(1)(ii) shall submit the records required under §63.774(c). - (9) The owner or operator shall submit an analysis demonstrating whether an affected source is a major source using the maximum throughput calculated according to §63.760(a)(1). - (10) The owner or operator shall submit a statement as to whether the source has complied with the requirements of this subpart. - (11) The owner or operator shall submit the analysis prepared under §63.771(e)(2) to demonstrate the conditions by which the facility will be operated to achieve an overall HAP emission reduction of 95.0 percent through process modifications or a combination of process modifications and one or more control devices. - (e) *Periodic Reports.* An owner or operator shall prepare Periodic Reports in accordance with paragraphs (e) (1) and (2) of this section and submit them to the Administrator. - (1) An owner or operator shall submit Periodic Reports semiannually, beginning 60 operating days after the end of the applicable reporting period. The first report shall be submitted no later than 240 days after the date the Notification of Compliance Status Report is due and shall cover the 6-month period beginning on the date the Notification of Compliance Status Report is due. - (2) The owner or operator shall include the information specified in paragraphs (e)(2)(i) through (ix) of this section, as applicable. - (i) The information required under §63.10(e)(3). For the purposes of this subpart and the information required under §63.10(e)(3), excursions (as defined in §63.773(d)(6)) shall be considered excess emissions. (ii) A description of all excursions as defined in §63.773(d)(6) of this subpart that have occurred during the 6-month reporting period. - (A) For each excursion caused when the daily average value of a monitored operating parameter is less than the minimum operating parameter limit (or, if applicable, greater than the maximum operating parameter limit), as specified in §63.773(d)(6)(i), the report must include the daily average values of the monitored parameter, the applicable operating parameter limit, and the date and duration of the period that the excursion occurred. - (B) For each excursion caused when the 365-day average condenser control efficiency is less than 95.0 percent, as specified in §63.773(d)(6)(ii), the report must include the 365-day average values of the condenser control efficiency, and the date and duration of the period that the excursion occurred. - (C) For each excursion caused when condenser control efficiency is less than 90.0 percent, as calculated according to the procedures specified in §63.772(g)(2)(iii) (A) or (B), the report must include the average values of the condenser control efficiency, and the date and duration of the period that the excursion occurred. - (D) For each excursion caused by lack of monitoring data, as specified in §63.773(d)(6)(iii), the report must include the date and duration of the period when the monitoring data were not collected and the reason why the data were not collected. - (iii) For each inspection conducted in accordance with §63.773(c) during which a leak or defect is detected, the records specified in §63.774(b)(7) must be included in the next Periodic Report. - (iv) For each owner or operator subject to the provisions specified in §63.769, the owner or operator shall comply with the reporting requirements specified in 40 CFR 61.247, except that the Periodic Reports shall be submitted on the schedule specified in paragraph (e)(1) of this section. (v) For each closed-vent system with bypass line subject §63.771(c)(3)(i)(A), required records under §63.774(b)(4)(iii) of all periods when the vent stream is diverted from the control device through a bypass line. For each closed-vent system with bypass line subject §63.771(c)(3)(i)(B), required records under §63.774(b)(4)(iv) of all periods in which the seal mechanism is broken, the bypass valve position has changed, or the key to unlock the bypass line valve was checked out. (vi) If an owner or operator elects to comply with \$63.765(b)(1)(ii), the records required under \$63.774(c)(3). - (vii) The information in paragraphs (e)(2)(vii) (A) and (B) of this section shall be stated in the Periodic Report, when applicable. - (A) No excursions. - (B) No continuous monitoring system has been inoperative, out of control, repaired, or adjusted. - (viii) Any change in compliance methods as specified in §63.772(f). - (ix) If the owner or operator elects to comply with \$63.765(c)(2), the records required under \$63.774(b)(11). - (f) Notification of process change. Whenever a process change is made, or a change in any of the information submitted in the Notification of Compliance Status Report, the owner or operator shall submit a report within 180 days after the process change is made or as a part of the next Periodic Report as required under paragraph (e) of this section, whichever is sooner. The report shall include: - (1) A brief description of the process change; - (2) A description of any modification to standard procedures or quality assurance procedures; - (3) Revisions to any of the information reported in the original Notification of Compliance Status Report under paragraph (d) of this section; and - (4) Information required by the Notification of Compliance Status Report under paragraph (d) of this section
for changes involving the addition of processes or equipment. #### §63.776 Delegation of authority. - (a) In delegating implementation and enforcement authority to a State under section 112(l) of the Act, the authorities contained in paragraph (b) of this section shall be retained by the Administrator and not transferred to a State. - (b) Authorities will not be delegated to States for $\S\S 63.772$ and 63.777 of this subpart. # §63.777 Alternative means of emission limitation. (a) If, in the judgment of the Administrator, an alternative means of emission limitation will achieve a reduction in HAP emissions at least equivalent to the reduction in HAP emissions from that source achieved under the applicable requirements in §63.764 through 63.771, the Administrator will publish in the FEDERAL REGISTER a notice permitting the use of the alternative means for purposes of compliance with that requirement. The notice may condition the permission on requirements related to the operation and maintenance of the alternative means. (b) Any notice under paragraph (a) of this section shall be published only after public notice and an opportunity for a hearing. (c) Any person seeking permission to use an alternative means of compliance under this section shall collect, verify, and submit to the Administrator information demonstrating that the alternative achieves equivalent emission reductions. # §§ 63.778-63.779 [Reserved] APPENDIX TO SUBPART HH—TABLES TABLE 1 TO SUBPART HH—LIST OF HAZARDOUS AIR POLLUTANTS FOR SUBPART HH | CAS Num-
ber ^a | Chemical name | | |------------------------------|--|--| | 75070 | Acetaldehyde | | | 71432 | Benzene (includes benzene in gasoline) | | | 75150 | Carbon disulfide | | | 463581 | Carbonyl sulfide | | | 100414 | Ethyl benzene | | | 107211 | Ethylene glycol | | | 50000 | Formaldehyde | | | 110543 | n-Hexane | | | 91203 | Naphthalene | | | 108883 | Toluene | | | 540841 | 2,2,4-Trimethylpentane | | | 1330207 | Xylenes (isomers and mixture) | | | 95476 | o-Xylene | | | 108383 | m-Xylene | | | 106423 | p-Xylene | | | | | | ^aCAS numbers refer to the Chemical Abstracts Services registry number assigned to specific compounds, isomers, or mixtures of compounds. TABLE 2 TO SUBPART HH—APPLICABILITY OF 40 CFR PART 63 GENERAL PROVISIONS TO SUBPART HH | General provisions reference | Applicable to subpart HH | Explanation | |-------------------------------|--------------------------|--| | § 63.1(a)(1) | Yes | | | § 63.1(a)(2) | Yes | | | § 63.1(a)(3) | Yes | | | § 63.1(a)(4) | Yes | | | § 63.1(a)(5) | No | Section reserved. | | § 63.1(a)(6) through (a)(8) | Yes | | | § 63.1(a)(9) | No | Section reserved. | | § 63.1(a)(10) | Yes | | | § 63.1(a)(11) | Yes | | | § 63.1(a)(12) through (a)(14) | Yes | | | § 63.1(b)(1) | No | Subpart HH specifies applicability. | | § 63.1(b)(2) | Yes | | | § 63.1(b)(3) | No | | | § 63.1(c)(1) | No | Subpart HH specifies applicability. | | § 63.1(c)(2) | No | | | § 63.1(c)(3) | No | Section reserved. | | § 63.1(c)(4) | Yes | | | § 63.1(c)(5) | Yes | | | § 63.1(d) | No | Section reserved. | | § 63.1(e) | Yes | | | § 63.2 | Yes | Except definition of major source is unique for this | | | | source category and there are additional defini-
tions in subpart HH. | | § 63.3(a) through (c) | Yes | tions in subpart in i. | Table 2 To Subpart HH—Applicability of 40 CFR Part 63 General Provisions To Subpart HH—Continued | TH—Continued | | | | | | |--|-----------------------------|--|--|--|--| | General provisions reference | Applicable to
subpart HH | Explanation | | | | | § 63.4(a)(1) through (a)(3) | Yes | | | | | | § 63.4(a)(4) | No | Section reserved. | | | | | § 63.4(a)(5) | Yes | | | | | | § 63.4(b) | Yes | | | | | | § 63.4(c)
§ 63.5(a)(1) | Yes
Yes | | | | | | § 63.5(a)(2) | No | Preconstruction review required only for major | | | | | 300.5(a)(2) | 110 | sources that commence construction after promulgation of the standard. | | | | | § 63.5(b)(1) | Yes | | | | | | § 63.5(b)(2) | No | Section reserved. | | | | | § 63.5(b)(3) | Yes | | | | | | § 63.5(b)(4) | Yes
Yes | | | | | | § 63.5(b)(5) | Yes | | | | | | § 63.5(c) | No | Section reserved. | | | | | § 63.5(d)(1) | Yes | Occion reserved. | | | | | § 63.5(d)(2) | Yes | | | | | | § 63.5(d)(3) | Yes | | | | | | § 63.5(d)(4) | Yes | | | | | | § 63.5(e) | Yes | | | | | | § 63.5(f)(1) | Yes | | | | | | § 63.5(f)(2) | Yes | | | | | | § 63.6(a) | Yes | | | | | | § 63.6(b)(1)
§ 63.6(b)(2) | Yes
Yes | | | | | | § 63.6(b)(3) | Yes | | | | | | § 63.6(b)(4) | Yes | | | | | | § 63.6(b)(5) | Yes | | | | | | § 63.6(b)(6) | No | Section reserved. | | | | | § 63.6(b)(7) | Yes | | | | | | § 63.6(c)(1) | Yes | | | | | | § 63.6(c)(2) | Yes
No | Section reserved. | | | | | § 63.6(c)(5) | Yes | Section reserved. | | | | | § 63.6(d) | No | Section reserved. | | | | | § 63.6(e) | Yes | Except as otherwise specified. | | | | | § 63.6(e)(1)(i) | No | Addressed in § 63.762. | | | | | § 63.6(e)(1)(ii) | Yes | | | | | | § 63.6(e)(1)(iii) | Yes
Yes | | | | | | § 63.6(e)(3)(i) | Yes | Except as otherwise specified. | | | | | § 63.6(e)(3)(i)(A) | No | Addressed by §63.762(c). | | | | | § 63.6(e)(3)(i)(B) | Yes | | | | | | § 63.6(e)(3)(i)(C) | Yes | | | | | | § 63.6(e)(3)(ii) through (3)(vi) | Yes | | | | | | § 63.6(e)(3)(vii). | ., | | | | | | § 63.6(e)(3)(vii)(A)
§ 63.6(e)(3)(vii)(B) | Yes
Yes | Except that the plan must provide for operation in | | | | | 9 03.0(e)(3)(VII)(B) | 165 | compliance with § 63.762(c). | | | | | § 63.6(e)(3)(vii)(C) | Yes | 22 | | | | | § 63.6(e)3)(viii) | Yes | | | | | | § 63.6(f)(1) | Yes | | | | | | § 63.6(f)(2) | Yes | | | | | | § 63.6(f)(3) | Yes | | | | | | § 63.6(g)
§ 63.6(h) | Yes
No | Subpart HH does not require continuous emis- | | | | | § 63.6(i)(1) through (i)(14) | Yes | sions monitoring systems. | | | | | § 63.6(i)(15) | No | Section reserved. | | | | | § 63.6(i)(16) | Yes | | | | | | § 63.6(j) | Yes | | | | | | § 63.7(a)(1) | Yes | | | | | | § 63.7(a)(2) | Yes | | | | | | § 63.7(a)(3) | Yes | | | | | | § 63.7(b)
§ 63.7(c) | Yes
Yes | | | | | | § 63.7(d) | Yes | | | | | | § 63.7(e)(1) | Yes | | | | | | § 63.7(e)(2) | | | | | | | | | | | | | # Pt. 63, Subpt. HH, App. TABLE 2 TO SUBPART HH—APPLICABILITY OF 40 CFR PART 63 GENERAL PROVISIONS TO SUBPART HH—Continued | HH—Continued | | | | | |--|--------------------------|--|--|--| | General provisions reference | Applicable to subpart HH | Explanation | | | | § 63.7(e)(3) | Yes | | | | | § 63.7(e)(4) | | | | | | § 63.7(f) | | | | | | § 63.7(g) | Yes | | | | | § 63.7(h) | | | | | | § 63.8(a)(1) | Yes | | | | | § 63.8(a)(2) | Yes | | | | | § 63.8(a)(3) | | Section reserved. | | | | § 63.8(a)(4) | | | | | | § 63.8(b)(1) | | | | | | § 63.8(b)(2) | | | | | | § 63.8(b)(3) | | | | | | § 63.8(c)(1) | | | | | | § 63.8(c)(2) | | | | | | § 63.8(c)(3) | | | | | | § 63.8(c)(4) | | | | | | § 63.8(c)(5) through (c)(8) | | | | | | § 63.8(d) | | | | | | § 63.8(e) | | Subpart HH does not specifically require contin | | | | | | uous emissions monitor performance evalua-
tions, however, the Administrator can reques
that one be conducted. | | | | § 63.8(f)(1) through (f)(5) | | | | | | § 63.8(f)(6) | | Subpart HH does not require continuous emissions monitoring. | | | | § 63.8(g) | | Subpart HH specifies continuous monitoring system data reduction requirements. | | | | § 63.9(a) | Yes | | | | | § 63.9(b)(1) | | | | | | § 63.9(b)(2) | | Sources are given 1 year (rather than 120 days) to submit this notification. | | | | § 63.9(b)(3) | | | | | | § 63.9(b)(4) | Yes | | | | | § 63.9(b)(5) | | | | | | § 63.9(c) | Yes | | | | | § 63.9(d) | Yes | | | | | § 63.9(e) | Yes | | | | | § 63.9(f) | Yes | | | | | § 63.9(g) | Yes | | | | | § 63.9(h)(1) through (h)(3) | | | | | | § 63.9(h)(4) | | Section reserved. | | | | § 63.9(h)(5) through (h)(6) | Yes | | | | | § 63.9(i) | Yes | | | | | § 63.9(j) | Yes | | | | | § 63.10(a) | Yes | | | | | § 63.10(b)(1) | Yes | | | | | § 63.10(b)(2) | Yes | | | | | § 63.10(b)(3) | | | | | | § 63.10(c)(1) | | | | | | § 63.10(c)(2) through (c)(4) | | Sections reserved. | | | | §63.10(c)(5) Through (c)(8) | | | | | | § 63.10(c)(9) | | Section reserved. | | | | § 63.10(c)(10) through (c)(15) | | | | | | § 63.10(d)(1) | | | | | | § 63.10(d)(2) | | | | | | § 63.10(d)(3) | | | | | | § 63.10(d)(4) | | | | | | § 63.10(d)(5) | | Subpart HH requires major sources to submit a startup, shutdown and malfunction report semi annually. | | | | § 63.10(e)(1) | Yes | | | | | § 63.10(e)(2) | | | | | | § 63.10(e)(3)(i) | | Subpart HH requires major sources to submi
Periodic Reports semi-annually. | | | | § 63.10(e)(3)(i)(A) | Yes | | | | | § 63.10(e)(3)(i)(B) | | | | | | § 63.10(e)(3)(i)(C) | | Subpart HH does not require quarterly reporting for excess emissions. | | | | § 63.10(e)(3)(ii) through (viii)
§ 63.10(f) | | TOT EXCESS ETHISSIONS. | | | | NOO. 10(1) | 5 | II | | | # Environmental Protection Agency, EPA Pt. 63, Subpt. HH, App. Table 2 To Subpart HH—Applicability of 40 CFR Part 63 General Provisions To Subpart HH—Continued | General provisions reference | Applicable to subpart HH | Explanation | |------------------------------|--------------------------|-------------| | | Yes | |